And now for something completely different...

Internet of Things RF and Instrumentation Platform at Max-IV

Dave McGinnis Max-IV RF Group

A little background

- Ph.D in superconducting RF devices from UW-Madison in 1987
- Worked at Fermilab for 23 years
 - Mostly on antiproton stochastic cooling systems (1-8 GHz)
 - Beam damping and stabilization systems
 - Instrument scientist for the 21 cm BAO Cylindrical Radio telescope
- Worked at ESS for 7 years
 - RF Group leader
 - Chief engineer
- Started at MaxIV in 2018
 - As RF group leader
 - Quicky demoted to RF engineer in 1 year (a new record for me)

Why is an RF Engineer Talking about IoT?

- Most innovations come from skunk works
 - That is, rarely do good ideas come from management
 - They come from engineers working in the lab
- When an engineer comes up with a new idea
 - He is not sure it will work
 - He needs to try things out but he needs help
- Controls both hardware and software are an *integral parts* of an RF system
 - But often approached as an afterthought
 - Leading to systems that are difficult to commission and operate

An IoT Control Platform for Skunk Works

• To assist me quickly work through my crazy ideas in the lab,

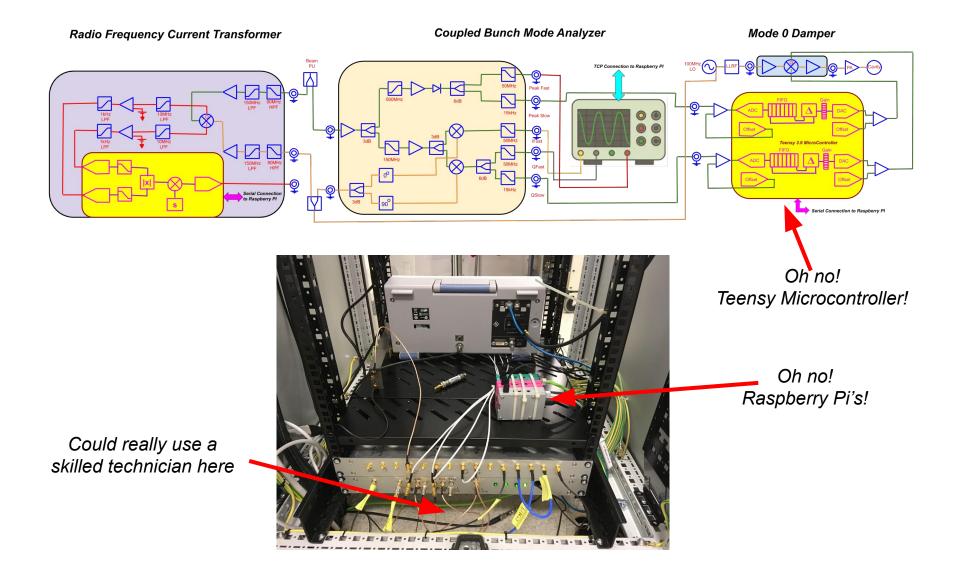
- I developed an IoT control platform
- in which a project could grow in complexity
- and gradually be implemented into operations
- Why not just use Labview?
 - Don't get me started...
- Why IoT?
 - Most accelerator RF systems have low bandwidth dictated by the synchrotron frequency no need for GHz digitizers and giant FPGA's
 - With IoT, you can get cheap high performance devices quickly so you are not waiting on the folks in the procurement department

• Why wireless?

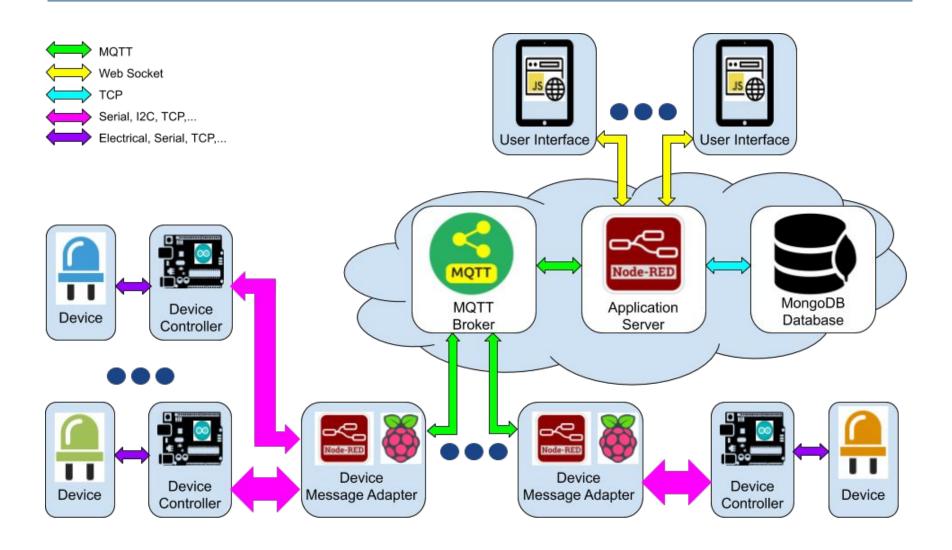
- Try getting the Controls department to pull ethernet cables to a remote service building (or even the tunnel) when you have no priority
 - especially when you are not sure how many cables you will need
 - or if your idea will work
- Why Web based?
 - Imagine an engineer lying on his belly in service building with a tweeky tool adjusting a system and having to go to the control room to change a parameter
 - COVID 19 Shared computers in control rooms should be a thing of the past

- MaxIV is a 3 GeV synchrotron light source operating at an RF frequency of 100 MHz with enough installed power for over 250 mA of beam current.
- MaxIV is designed to operate in the long bunch mode (bunch lengths > 500 ps rms) using passive third harmonic Landau cavities.

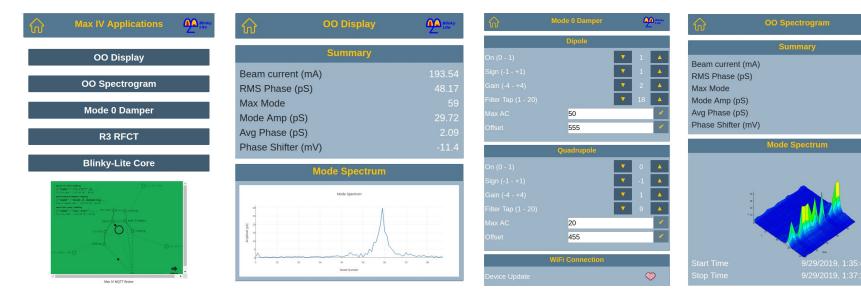
- MaxIV is a small lab (~ 200 people) with limited human and financial resources.
 - Delay in beamline construction has absorbed the most of the control system resources.
 - There are limited software and IT resources available. (Please take out a ticket...)
- Limited technical resources.
 - Engineers design and build their own electronics boards.
 - There are no technicians in the RF Group
- Limited financial resources.

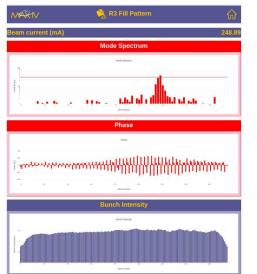


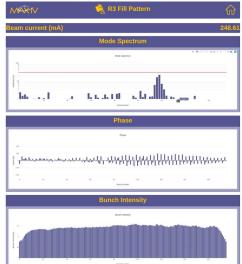
- As of April 2018, it was not possible to operate in long bunch mode past 120 mA because of longitudinal instabilities.
 - MaxIV does possess a longitudinal bunch-by-bunch feedback system but the system was not effective in the long bunch mode.
- It was surmised that the longitudinal instability was a dipole mode 0 coupled bunch mode instability but there were no diagnostics to prove this assertion.

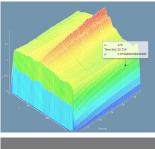

We needed something:

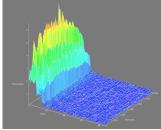
- Quickly
 - using standard off-the shelf hardware and software components
- Easy to install
 - minimal cable plant,
 - minimal rack space,
 - low power,
 - minimal reliance on software and hardware experts
- Cheap
- Reliable
- Remotely configurable but secure

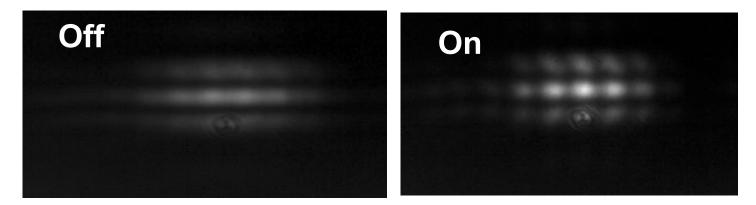

The RF Hardware

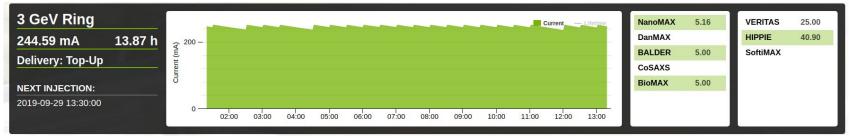



System Architecture

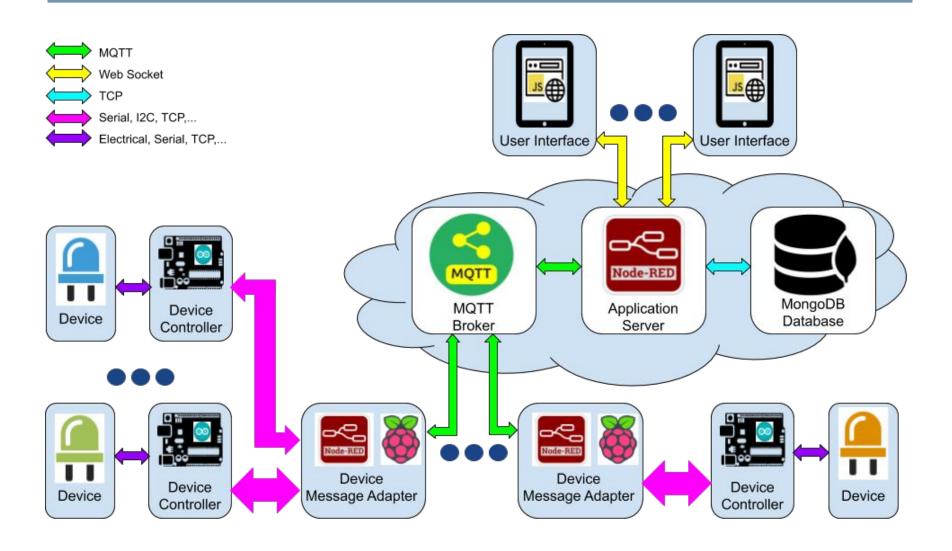



Mode 0 Web Software




ŵ	R3 RFCT		A staty Lite
	Dashboard		
		215.8	Edit
	History		

Archive							
2	4	8	24	72	168	Hours	
- Nor C							
			e paaraanaanaanaanaanaanaanaanaanaanaanaana	annan lana a	uuuun In Innu	uuun In	
ų							
	-40	-50	-0	100	-90		


The Results

- I begun working at MaxIV in April 2018
- In June 2018, the coupled bunch mode analyzer was commissioned and Mode 0 instability identified.
- In September 2018, the Mode 0 damper commissioned
- In October 2018, long bunch operation at 250mA at MaxIV was put into routine operations
- As of Nov 2020, there have been no failures with the Mode 0 system

My IoT Architecture

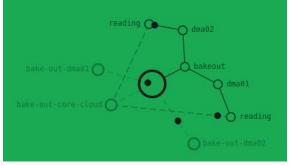

IoT Components

- Device
 - Plethora of IoT sensors and actuators
- Device Controller
 - Interfaces directly with device sensor and/or actuator through ADC, PWM, Digital I/O or DAC pins
 - Communicates (serially, I2C,...) to the Device Message Adapter (DMA)
 - Usually programmed using the Arduino IDE
- Device Message Adapter (DMA)
 - Communicates with a number of Device Controllers
 - Concentrates and scales device data
 - Translates data to and from the MQTT broker
 - Programmed in Node.js with the Node-RED programming environment

Teensy LC Device Controller

Raspberry Pi Zero DMA

IoT Components


- MQTT Broker
 - Can be cloud based
 - Receives and transmits messages to DMA's
 - Receives and transmits messages from to the WAS

Web Application Server (WAS)

- Can be cloud based
- Collects and transmits data to DMAs and user applications
- Archives data to MongoDB database
- Serves user applications
- Handles authentication

MongoDB database

- Can be cloud based
- Archives data
- Records are JSON documents
 - matches well with Node.js and Node-RED
 - Non-relational easy to extend
- User Application
 - Web based for easy deployment
 - mobile first but not mobile only
 - Written in Javascript
 - Communicates to the Web Application server via web-sockets

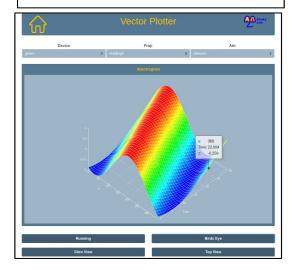
📀 /dma01	Set Device Leader to 1	Title 1	{ GaugeWidget	
/dma02	Set Device Leader to 2	Title 2	{ Bar Widget	
		9	{ StripChart Widget	
		9	Change Database Key Value	5
				_
Global Ja	vascript	Ramp Control	HTML	
Update R	eadings Javascript	State HTML	Body	App HTML
Ramp Se	ttings JavaScript	History HTML		
Set State	JavaScript	Archive HTML		
Archive J.	avaScript			
Script.edit	TempDuty			
<a>€ { Jav	vaScript			

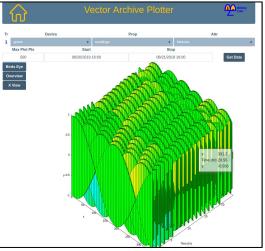
System Features

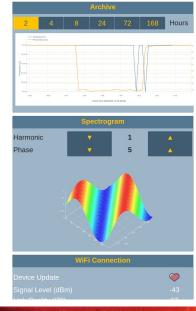
- Cloud capable Cloud deployments give enhanced:
 - Accessibility and deployment capability,
 - Along with enhanced reliability and security (https:// and wss://),
- Layered authentication
 - JSON Web Tokens for client-server transactions
 - Authenticated MQTT broker for server-device transactions
- JSON Device configuration
 - Flexible data types (scalar, vector, text, images, blobs,...)
 - Human readable and configurable
- MQTT and Websocket communication
 - Publish-subscribe instead of polling protocols
- SMS Alarm notification
- Graphical Node-Red code environment
 - Re-usable code
 - Self documentation

System Features

Eight web-based core applications




ŵ								
Start Date		Stop Date						
09/18/2019 0	8:39 09/	9/2019 08:39	Get Da	ta.				
urt	ip .	country	region	city	rdns	isp	timezone	datetime
Joore	83.254.136.245	undefined	undefined	Lund	c83-254-135-245 bredband comhem se	Com Hem AB	Europe/Stockholm	2019-09-19 08:35:49
1	83.254.136.245	undefined	undefined	Lund	c83-254-138-245 breckand comhem se	Corn Hern AB	Europe/Stockholm	2019-09-19 08:35:35
Imode-0-damper	78.72.135.23	undefined	undefined	Lund	78-72-135-23-no56.tbcn.telia.com	Telia Company AB	Europe/Stockholm	2019-09-19 07:38:54
I	78.72.135.23	undefined	undefined	Lund	78-72-135-23-no56.tbcn.tella.com	Tella Compeny AB	Europe/Stockholm	2019-09-19 07:38:45
/settings-log	78.72.135.23	undefined	undefined	Lund	78-72-135-23-no56.tbcn.telia.com	Telia Company AB	Europe/Stockholm	2019-09-19 07:38:27
Jaccess-log	78.72.135.23	undefined	undefined	Lund	78-72-135-23-no56.tbcn.tella.com	Telia Company AB	Europe/Stockholm	2019-09-19 07:37:46
Isettings-log	130.235.59.234	undefined	undefined	Lund	wexc012.srv/lu.se	Lund University	Europe/Stockholm	2019-09-19 05:45:19
Jaccess-log	130.235.59.234	undefined	undefined	Lund	wexc012.srv.hi.se	Lund University	Europe/Stockholm	2019-09-19 06:44:59
1	130.235.59.234	undefined	undefined	Lund	wexc012.srv/lu.se	Lund University	Europe/Stockholm	2019-09-19 05:37:16
I	188.150.74.104	undefined	undefined	Lund	188.150.74.104	Com Hern AB SUNET SUNET	Europe/Stockholm	2019-09-18 22 22:27



Summary

A skunk works IoT Control Platform made by and for RF Engineers

- Extremely reliable and robust control
 - Based on high performance but inexpensive IoT computing placed *close* to the devices to control.
- Web Accessibility
 - Applications are web-based giving control from anywhere in the world.
- Flexibility
 - Based on open source for easy customization
- Easy to implement
 - Designed for non-experts who have beginner knowledge in Javascript.
- Easy to interface with TANGO and EPICS
 - Robust RESTful Interface

