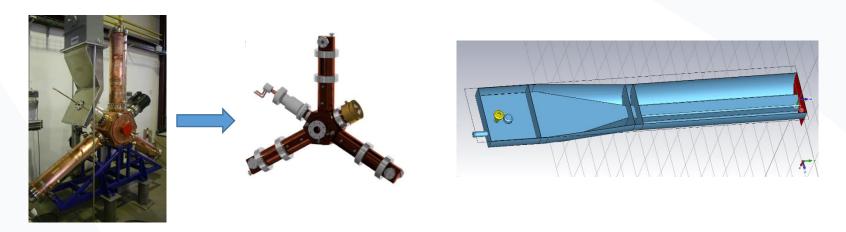


J. Ocampo on behalf of the ALBA RF group

ALBA 3rd Harmonic Cavity manufacturing and test collaboration

25th ESLS RF meeting Hamburg 8th/9th Nov. 2021

Contents



- Introduction
- Manufacturing status
- Test collaboration with DESY and HZB
- Conclusions

Introduction

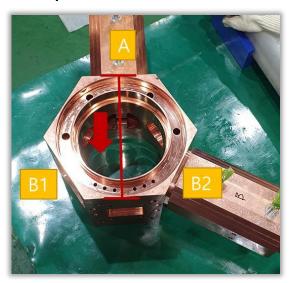
- Scaled version of the 500 MHz EU HOM Damped cavity and optimized
- Replaced ferrite absorbers in dampers by transition to external load
- Prototype is currently doing the FAT

Cavity main parameters

	Design value	Pre-FAT measurements
Central frequency	1499,8 MHz	1497,6 MHz
Tuning range	> 6 MHz	12 MHz
Voltage	215 kV	
Dissipated power	16 kW	
Q	14.000	12.700*
Shunt impedance	1,2 ΜΩ	
R/Q	86 Ω	

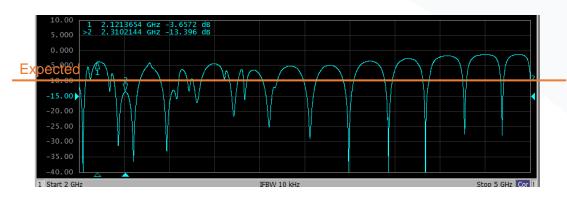
Manufacturing

- Manufacturing started in February 2020 by Vitzro Tech (South Korea)
- No significant delays due to Covid-19
- Also no possibilities of visiting the manufacturer during the whole project



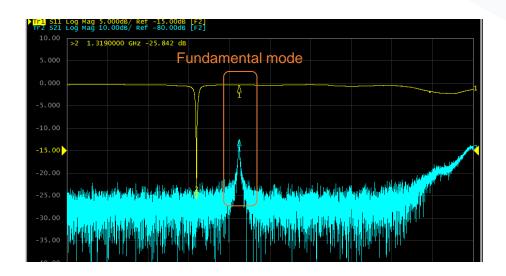
Manufacturing difficulties

- Complicated body brazing had to be repeated
- Also, this part had to be baked 3 times to avoid vacuum leaks

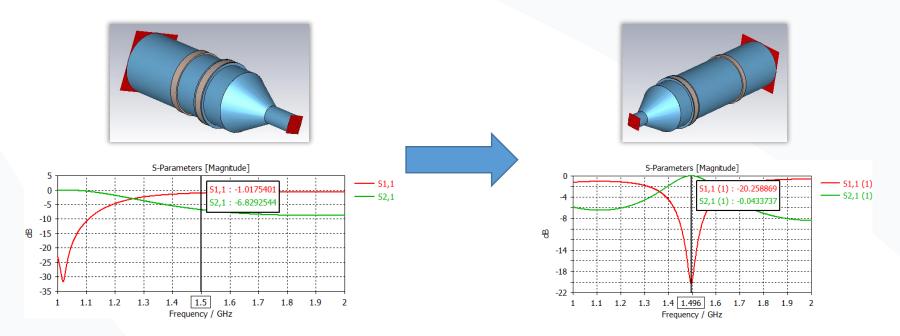


TransDamper performance

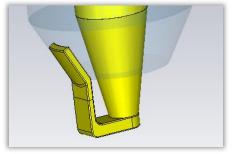
- TransDamper matching checked.
 - Expected -10dB, but measured -5dB up to 4GHz.
 - Optimization by adjusting antenna position/size possible
 - Effect on HOM damping to be measured in bead-pull
 - Ferrite design as alternative

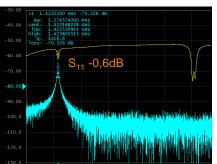


Input coupler on-the-fly redesign

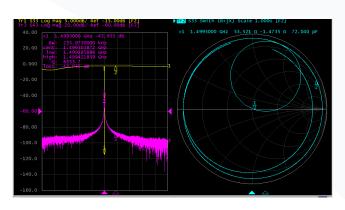

- First RF measurements showed little coupling to fundamental mode
- Rotating the coupling loop did not help significantly

Coupler problem 1: low transmission at 1,5 GHz

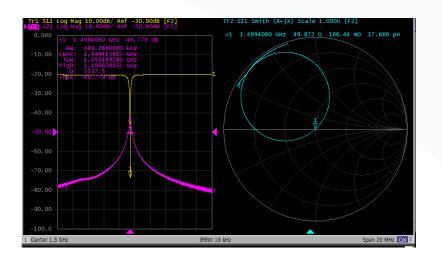

High reflection at 1,5GHz. Fixed without modifying already brazed parts



Coupler problem 2: low coupling (loop geometry)

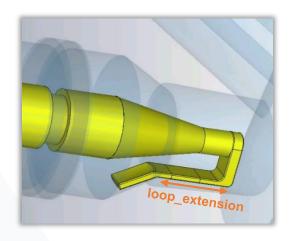

After modifying coaxial line, still low coupling to fundamental mode:

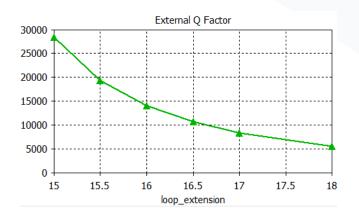
Wire test to find approximate geometry



Coupler problem 2: low coupling (loop geometry)

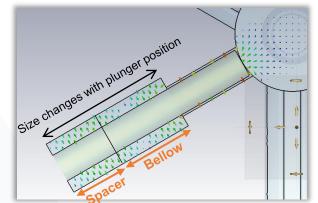
- Test second loop geometry based on wire test result:
 - Good coupling (-46,7 dB), but Q₀ degraded to ~7000

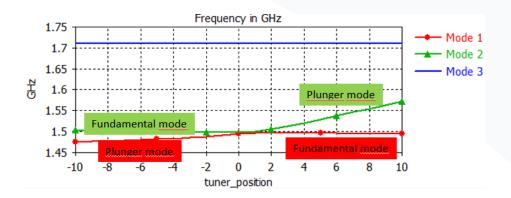




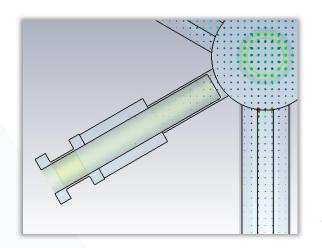
Coupler problem 2: low coupling (loop geometry)

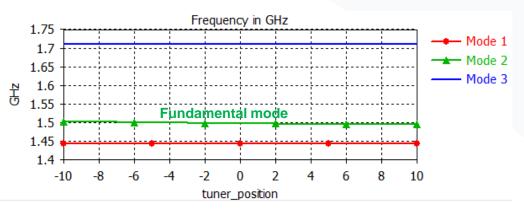
- Obtain optimal loop length during SAT:
 - 1. Manufacture and test optimum loop according to simulator
 - 2. If it does not work, test 2 loops with close dimensions
 - 3. Q_{ext} is vs loop length is easy to interpolate in this region




Plunger mode

- Around the central frequency, the quality factor suddenly drops
- Behaviour dependant on plunger position


Resonant mode at 1.5GHz in plunger manipulator



Plunger mode

- Around the resonant frequency, the quality factor suddenly drops
- Behaviour dependant on plunger position
- Will fill the cavity to move away this mode

1,5 GHz WATRAX

- Designed a 1,5GHz WATRAX (WG to coax transition)
- Manufactured and measured by DESY

Picture and measurements courtesy of Fuchs, Heuck and Rüdiger Onken, DESY

Test collaboration with DESY and HZB

- DESY, HZB and ALBA are collaborating on this project to:
 - Build the cavity prototype
 - Build WATRAX
 - Perform EM simulations of the cavity
 - Bead-pull measurement
 - Conditioning in HoBiCaT bunker
 - Installation in BESSY II on 2022 summer shutdown.

Conclusions

- Cavity prototype doing FAT right now
- SAT foreseen before the end of this year
 - Coupler loop optimization to be done during SAT
 - Plunger mode suppressor to be tested during SAT
- Bead-pull, conditioning and beam tests in BESSY II foreseen during 2022 in collaboration with HZB and DESY
- TransDamper performance to be validated during bead-pull

Thank you for your attention!

ALBA 3rd Harmonic Cavity manufacturing and test collaboration

25th ESLS RF meeting Hamburg 8th/9th Nov. 2021