

Status of RF Power and Acceleration of the MAX IV - LINAC

MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University

1981 – MAX-lab is formed 1986 – First experiments at MAX I 1997 – First experiments at MAX II 2005 – MAX IV Conceptual Design Report 2007 – First experiments at MAX II 2009 – Decision to build MAX IV 2016 – First experiments at MAX IV 2025 – First experiments at FEL !!!!!!!!

"It's too dangerous not to take the risks" Mikael Eriksson

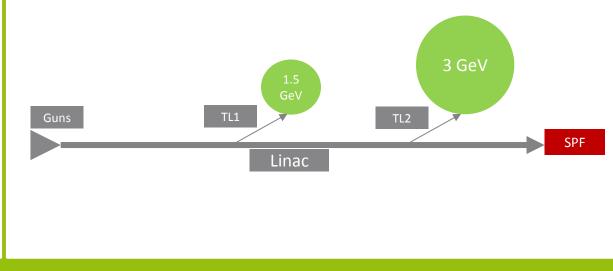
Dionis Kumbaro

MAX IV Laboratory - LINAC

- Why was MAX IV Linac projected in this way?
- What has MAX IV Linac in its composition?
- How it is MAX IV Linac built and it works?

MAX IV Laboratory - LINAC

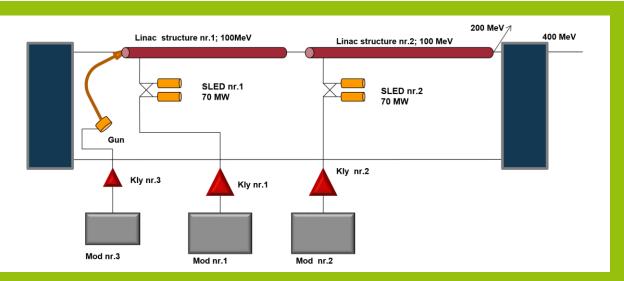
- Why was projected in this way?
 - The demand for high energy and high quality electron beam
 - The historical reasons
 - Techniques achievement
 - Modularity
 - As simply as possible
- What is its composition?
 - RF Guns
 - RF Units
 - Accelerators structures
 - SLED cavities
 - Waveguide system
- How it is built and it works?
 - Assembling and installation
 - RF conditioning
 - Linac commissioning
 - Linac running

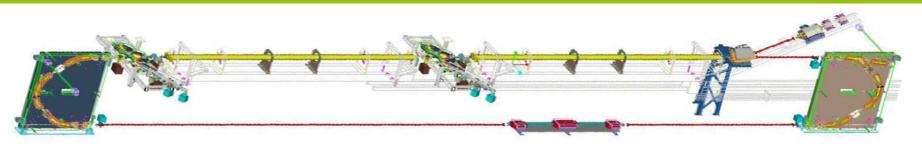


Why was projected in this way?

1. The demand for high energy and high quality electron beam, to meet the needs of injection of two rings and SPF.

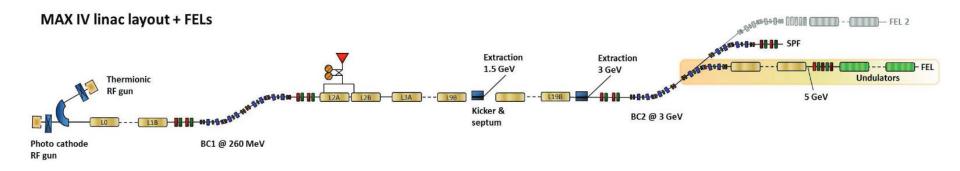
- Full energy Linac should delivers top-up shots to both storage rings
- Two deticated vertical (achromatic) transfer lines
- Therminic RF Gun injects at PRF 10Hz
- Injection into rings via DC Lambertson septum
- Extraction requires interruption of 100 Hz SPF operation (energy filter and extraction magnets need to ramp up)
- SPF Short Pulse Facilities: Photocathode RF Gun, 3GeV, 100Hz


Quality requirements for Linac


 for the rings 1,5GeV & 3GeV Position at extraction within 100 micron Angle at extraction within 100 micro-rad Transverse normalized emittance around 10 mm mrad Energy spread within one S-band bucket better than 0.1% Energy spread over entire 100 ns train better than 1% Total charge of a 100 ns train 1 nC or better The train length >100 ns as long as the correlated energy spread <1% 500 MHz structure: every 6th S-band bucket passes the chopper -> 50 S-band bunches within the 100 ns train 	for the SPF - Energy 3 GeV - Norm RMS emittance 1 mm mrad - RMS Energy spread 0.4% - Charge 0.1 nC - Repetition rate 100 Hz - RMS pulse-to pulse energy stability 0.05% - RMS pulse to pulse positional stability 4 μm (H&V) - RMS angular stability 4 μrad - FWHM bunch length 100 fs - RMS time jitter <0.5 ps

Why was projected in this way? Why S-band?

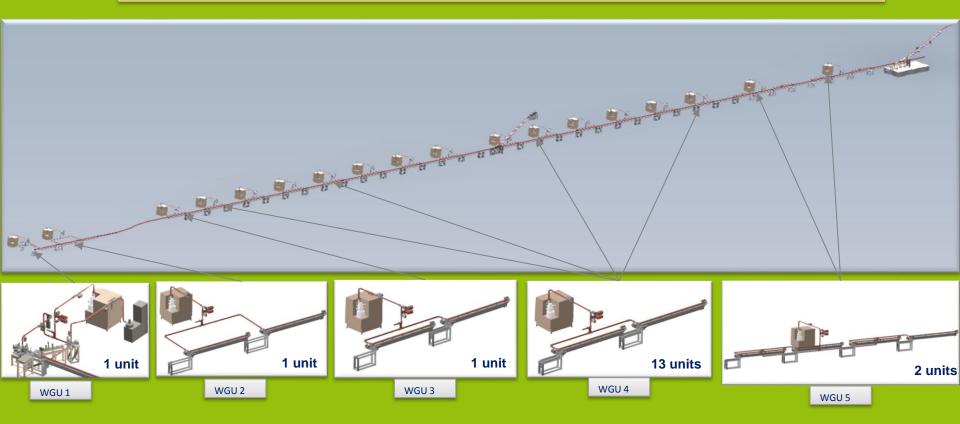
- 2. For historical reasons: we had a long experience in the construction, improvement and use of the S-band Linac from the old MAX-lab
 - SLED technology
 - Take special care to the quality of the cooling and temperature-controlled water.
 - Avoid using vulnerable materials in the radiation field etc.


Why was projected in this way?

3. It was taken into account what techniques can be applied approaching us at the time and several years in the future

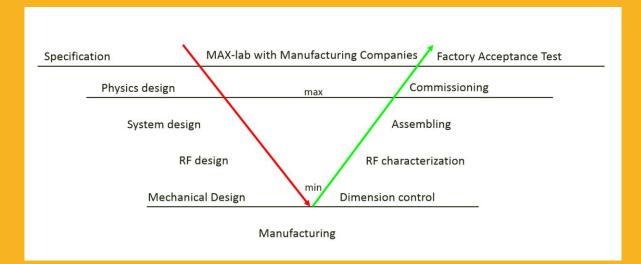
4. Modularity was one of our priority on this project, it help on easily and inexpensive installation and maintenance.

5. As simply as possible, but complicated enough to perform the task was charged

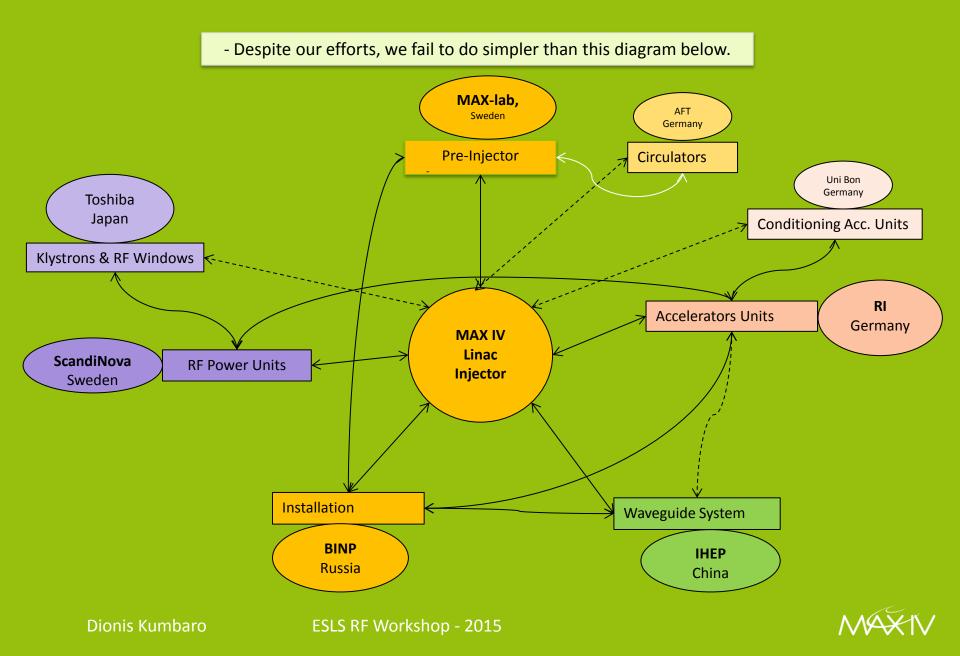

- Master, please tell me the secret how do you paint so beautifully this elephant: Da Vinci: simple, not paint the parts that do not belong to elephant

LINAC is build on modules: 5 different model for 18 modules

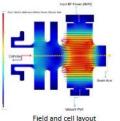
- 18 pcs: RF power units (37MW peak, 4,5usec, 100Hz), ScandiNova mod & Toshiba klystron
- 1 pc: RF power unit (8MW peak, 3usec, 10Hz), ScandiNova mod & Toshiba klystron
- 18 pcs: SLED (Q=100000, 4,5usec in, 0,7usec out), RI
- 2 pcs: RF guns (a therminioc, second photocathode), MAX IV Laboratory
- 39 pcs: Linac structer (max gradient of acceleration 25MV/M, 5m long), RI



What is its composition? – Manufacturing Companies


 The philosophy in relations with the companies, cooperate and work together, keep focus to reach the goal.
 As happened to have problems with production or delivery time, follow them near by until we get solution. (keep in mind that this will be a long-term relationship)

- The method of cooperation with manufacture companies has been the very familiar "V" form of cooperation and implementation. The cooperation has been somewhat different for different companies. Our moto Trust and Control.



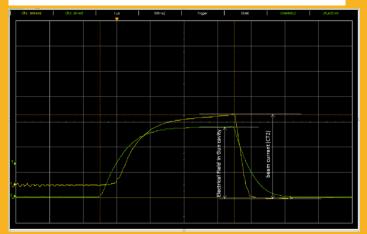
What is its composition?

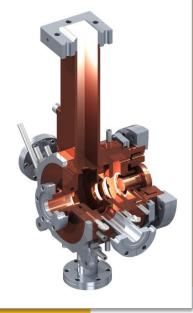
What is its composition? – RF Guns (Thermionic)

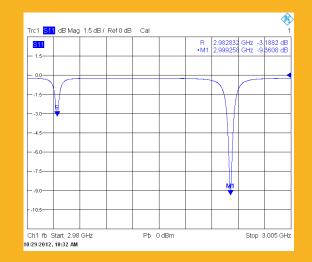
Thermionic RF gun

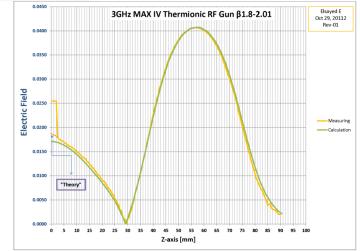
This gun builds on the existing thermionic RF gun in operation at MAXlab. It is improved for higher coupling, better cooling and lower surface field densities (increased radiia on apertures).

The improved structure is in production. The cathode is standard BaO.


Rep rate


Energy


Coupling


Q

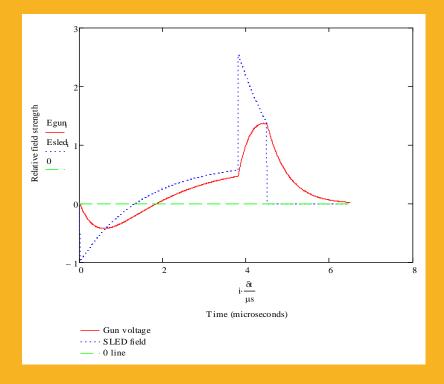
Dionis Kumbaro

What is its composition? – RF Guns (Photocathode)

Photo cathode RF gun

Charge as a function of

laser pulse energy


#0 W5,117 The photo cathode RF guns are built with the experience of the Fermi@ELETTRA gun previously tested at MAX-lab. A first structure has been operated up to 3.3 MeV electron energy (kinetic).

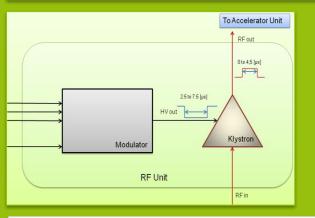
A quantum efficiency of $1.5 \ 10^{-5}$ for the Cu cathode has been measured. Saturation of the emitted charge (see fig) was seen already above 50 mJ laser energy, which is partly due to the small laser spot size (0.4 mm RMS).

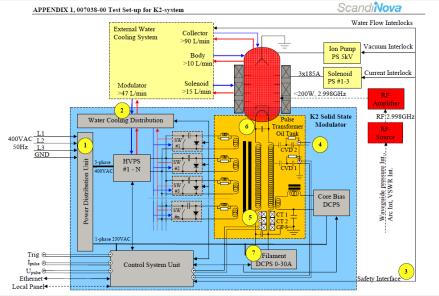
The coupling of the tested structure was 1.45 which is not enough for the short pulses from the SLED system. Thus a gun with coupling >1.85 is in production.

Rep rate	10-100	Hz (design)
Energy	~4	MeV (design)
Frequency	2998.5	MHz
Mode separation	14.3	MHz
Q	12 150	
Coupling	1.76	

- Using SLED RF pulse on photocathode RF Gun, is released 4,6 times less heating compared to a 3 μs rectangular pulse for a given gun field

Dionis Kumbaro


What is its composition? - RF Units (Modulator)


- Three principal concepts:

Parallel Switching
 Pulse to Pulse Control

1. Spit Core

× 18 pcs SCN modulator K2, Toshiba klystrons model E37310,× 1pc SCN modulator K1, Toshiba klystron E37326

- Our K2 modulators have three HVPS and seven parallel switching units.

Dionis Kumbaro

What is its composition? – RF Units (Klystron)

RF Unit parameters

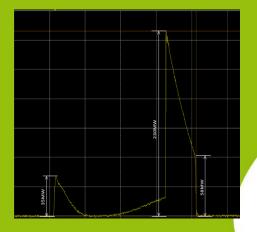
Nr	Parameter	Unit	Value
1	RF frequency	MHz	2998,5
2	Max. Peak RF Output Power	MW	35 - 37
3	Max. Klystron Average RF Power	kW	16 -18
4	RF flat top pulse width variable	μs	0 to 4.5
5	Voltage Pulse width variable (80%)	μs	2.5 to 7
6	Pulse Repetition Frequency variable	Hz	0 to 100
7	Flat top ripple or droop	%	± 1,5
8	Pulse to pulse voltage stability	%	± 0.01
9	Voltage pulse to pulse jitter	ns	≤ 6
10	Modulator Electric efficiency	%	>80
11	Klystron efficiency	%	>40
12	RF output flange		LIL

PULSED KLYSTRON AMPLIFIER E37310

TOSHIBA E37310, S-band high-power pulsed amplifier klystron, is designed for linear accelerators. The E37310 delivers 37 Mw peak output power with a power gain of more than 48.5 dB and with an efficiency of more than 40%. ^(*1)

The electron beam is focused with the electromagnet VT-68922.

An "M"-type dispenser cathode with high reliability promises long tube life.


Klystron parameters

Parameters	Symbol	Unit	Min.	Max.	Note(s)
Frequency	f	MHz	2995.5	3001.5	Note(S)
Heater Voltage	' Ef	V	2990.0	20	3&4
Heater Current	Li lf	V A		20 18	3 3
Heater Current (surge)	lf (surge)	A		20	5
	th	minutes		20 5	
Heater Warm-up Time	ui tk	minutes	 25	-	3
Cathode Warm-up Time					-
Peak Forward Beam Voltage	еру	kV		165	5&6
Peak Inverse Beam Voltage	ерх	kV		50	7
Peak Cathode Current	ik	A	-10	120	8&8A
Peak Drive Power	pd	W		120	9
Peak RF Output Power	ро	MW		8.5	
Average RF Output Power	Po	kW		10	
Collector Dissipation	Pcol	kW		20	
Pulse Width (duration) (epy)	tp(epy)	μs		7.5	10
Pulse Width (duration) (rf)	tp(rf)	μs		5.0	11
Pulse Repetition Rate	prr	pps		300	
Ion Pump Voltage	Vip	kV	3.2	3.8	15
Load VSWR	σL	VSWR		1.4	11A
Coolant Flow					
Collector	Qw,c	L/min	25		14&14A
Body	Qw,b	L/min	10		14
Inlet Coolant Temperature	Tw,i	centigrade	5	40	12
Coolant Pressure	Pw,c	MPa		0.78	12
		(kgf/cm ²		8.0)	
Waveguide Pressure					
Gauge Pressure	PW/G	MPa (kgf/cm ²	0.098 1.0	0.294 3.0)	13&13A

What is its composition? – SLED Cavities

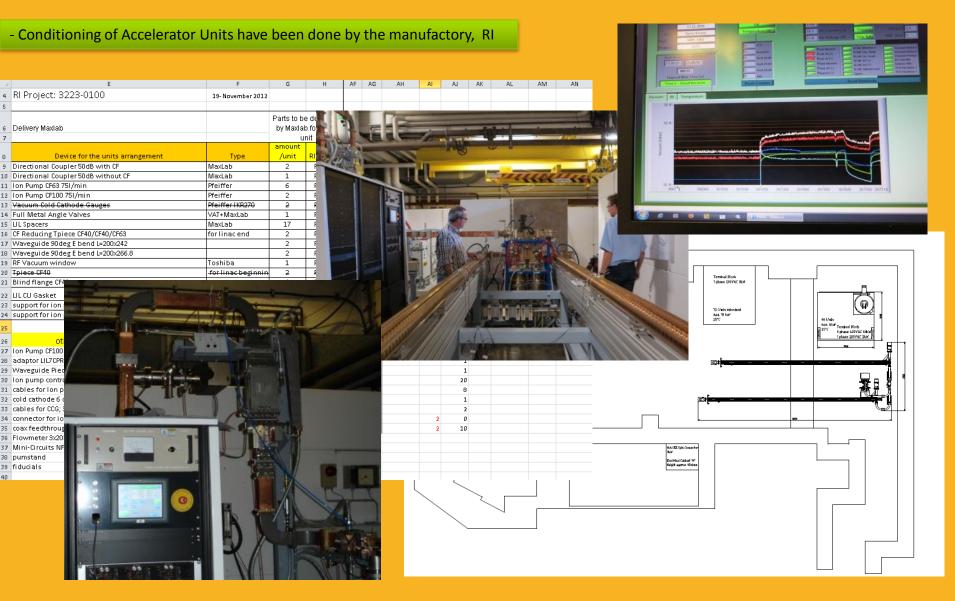
-RI product, based on MAX-lab uppdated drawings

Dionis Kumbaro

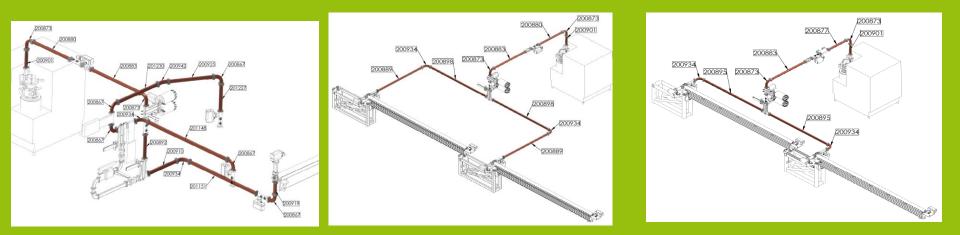
Operating frequency [MHz]	2998.5 +/- 0.5
Resonant mode	TE015
Q, unloaded	98000 +/- 5000
Coupling value β	6
Flange type	LIL
Frequency tuning design	end cap
	deformation by
	stepping motor
Frequency tuning range [MHz]	+/- 1
Frequency tuning speed [min]	max. 1 for full
	range
Operating temperature [°C]	40 +/- 2
Max. cooling water difference pressure [bar]	6

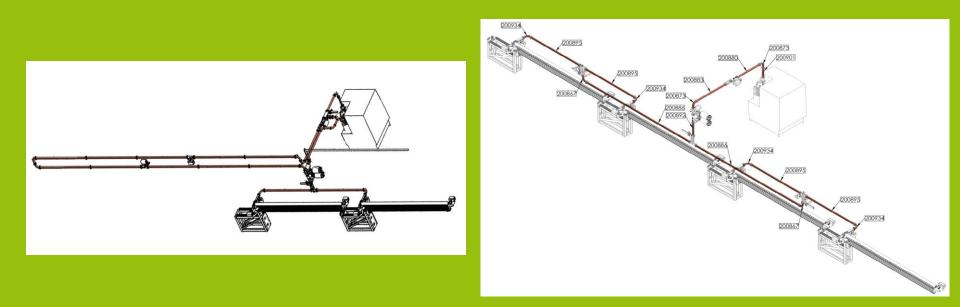
MAXIV

What is its composition? – Accelerator structure


× Linear accelerator structures are protected from outside magnet field, by using u-metal protections

× Linear accelerator structures and SLED cavities are thermo – isolated.




What is its composition? – Pre-conditioning

What is its composition? – Waveguide system

How it is assembly and it works? – Installation

Klystron gallery June → September 2013

Linac tunnel June → September 2013

Dionis Kumbaro

How it is assembly and it works? – Installation

- Thermionic RF Gun

- SLED Cavities

- Linac structure

- Power divider

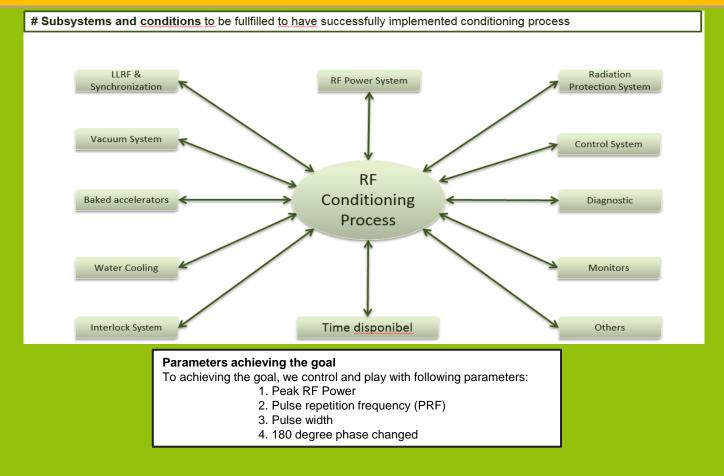
- Linac tunnel (Pre-injector)

MAXIV

Dionis Kumbaro

How it is assembly and it works? – Installation

September - 2015



Dionis Kumbaro

How it is assembly and it works? – RF conditioning

LINAC conditioning have been done through five phases:

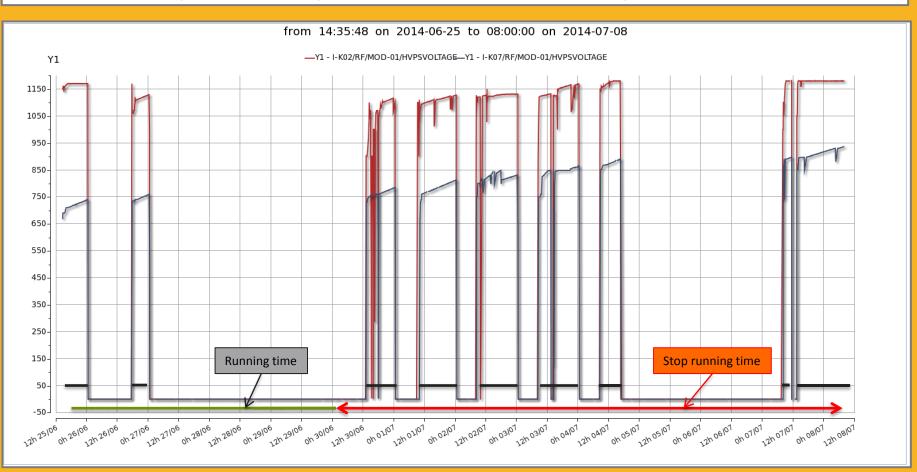
- 1 Factory Acceptance Test (FAT) to all linac structures, SLEDs and power dividers , done by RI (Research Instruments)
- 2 Pre-conditioning on full RF power to all linac structures, SLEDs and power dividers in radiated protected area in UniBon done by RI, thanks to excellent cooperation RI & MAX-lab & ScandiNova
- 3 Factory Acceptance Test (FAT), to RF Units (modulator with Klystron load) done by ScandiNova i Uppsala
- 4 Site Acceptance Test (SAT) of RF Units (modulator & Klystron), from SCN in MAX IV Linac klystron galleriet i Lund
- 5 Conditioning of complet Linac, by MAX IV personel i Linac tunnels i Lund.

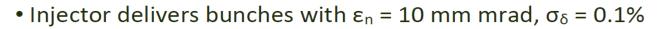
Dionis Kumbaro

How it is assembly and it works? – Baking process

¤ From the beginning when accelerator units assembling finished, we decided that: units with complicated configuration, as was K00, K01 and K02 to be baked at temperatures of 110 degrees for a week. For others such as K03, K04, etc. that had simple configuration, and very good value vacuum, was decided not to bake them (ironically, to save time)

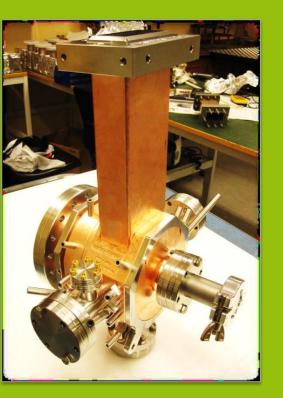
¤ K02 unit, even though it was baked, the configuration between Klystron and SLED not allowed us to continue with further conditioning. So we were forced to do the "dry ice blasting" process, after this operation became possible to go beyond med conditioning


After we made attempts conditioning units K03, K04 and so on, and have not reached the right result on time, we decided to test baking the worse unit : K06. The result showed that baking had great effect in accelerating this process. So we baked all units, and that help to succeed the RF conditioning on acceptable level.

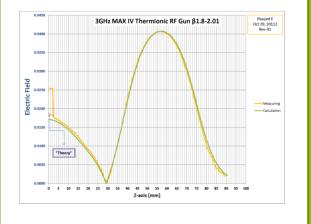

How it is assembly and it works? – RF conditioning

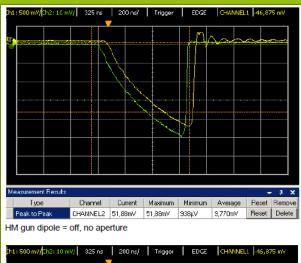
Each pause of conditioning, reduced the conditioning level, and the deterioration was proportional with the length of the time the process have been stopped

RF conditioning process has been longer than we planned but within reasonable time. Mostly it was the wrong with time planning than conditioning process. Not all units respond in the same way, had to use different methods depends on the need of each device.



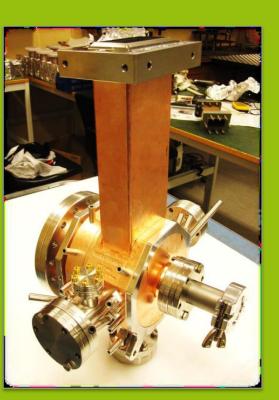
- Ring injection occurs at 10 Hz (governed by damping time)
- Inject trains of bunches
 - Each train consists of up to 10 bunches (10 x 10 ns)
 - Each bunch can contain up to 60 pC (3 x 20 pC @ 3 GHz)

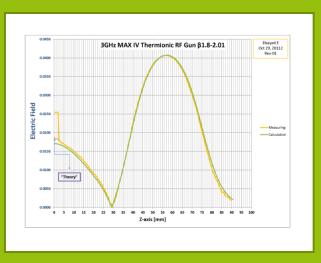



Solaris Thermionic RF Gun is delivered

Results of Solaris Thermionic RF Gun test running:

- Current beam: 101 mA before EF,
- Current beam: 40 mA after EF
- EF dipole: 4.3 A => E_kin = 2.3 MeV
- Conditions running:
 - Without kicker, 2 mm aperture, 6.8 A filament


LH1:500 mV/LH2:10 m	V 325 ns	200 ns/	Ingger	EDGE	CHANNEL	1 -46,875 mV
			ł			
11 discrimination in the second second				-100	<u> </u>	
3	\square	\backslash	÷			
	,	X	i.			
				, 1		
			ł			
Measurement Results 🗸 🗸 🛪						
Туре	Channel	Current	Maximum	Minimum	Average	Reset Remove
Peak to Peak	CHANNELZ	30,63mV	51,88m//	938µV	10,00mV	Resei Delete
HM gun dipole = off, 2mm aperture						



CLS Thermionic RF Gun is delivered

Simulated parameters from COMSOL.

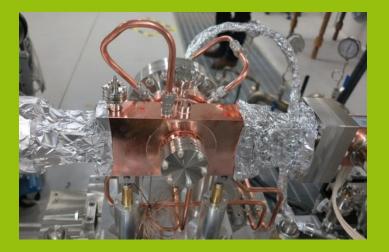
Resonance frequency $(\frac{\pi}{2}$ -mode) Mode separation	2.856 GHz 16.9 MHz
Q_0 (unloaded)	13098
Field relation (cathode vs max) Coupling factor (β)	$0.42 \\ 1.99$

Measured parameters in air at 24.3°

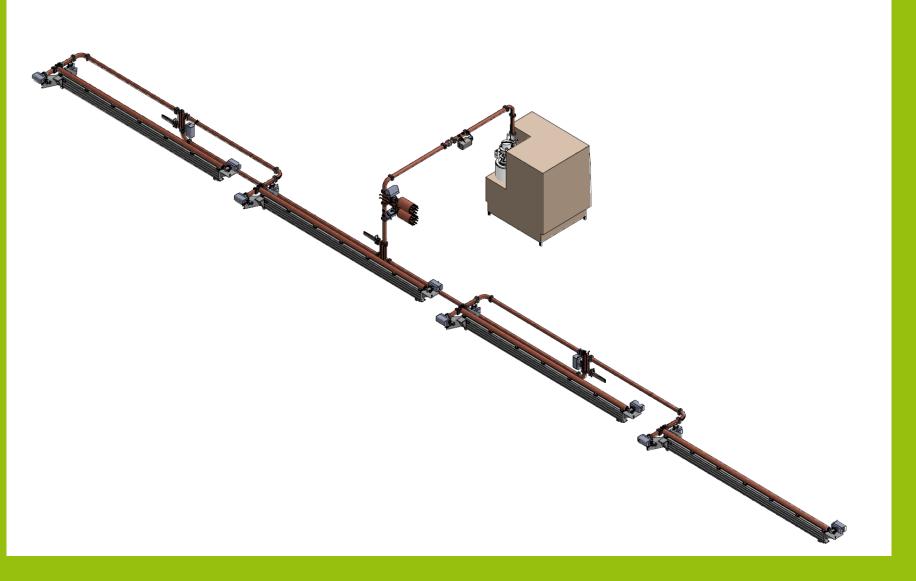
Resonance frequency $(\frac{\pi}{2}$ -mode)	$2.856008 {\rm GHz}$
Mode separation ²	$17.4 \mathrm{~MHz}$
Q_0 (unloaded)	12600
Field relation (cathode vs max)	0.38
Coupling factor (β)	1.68

New sub-projects - LINAC

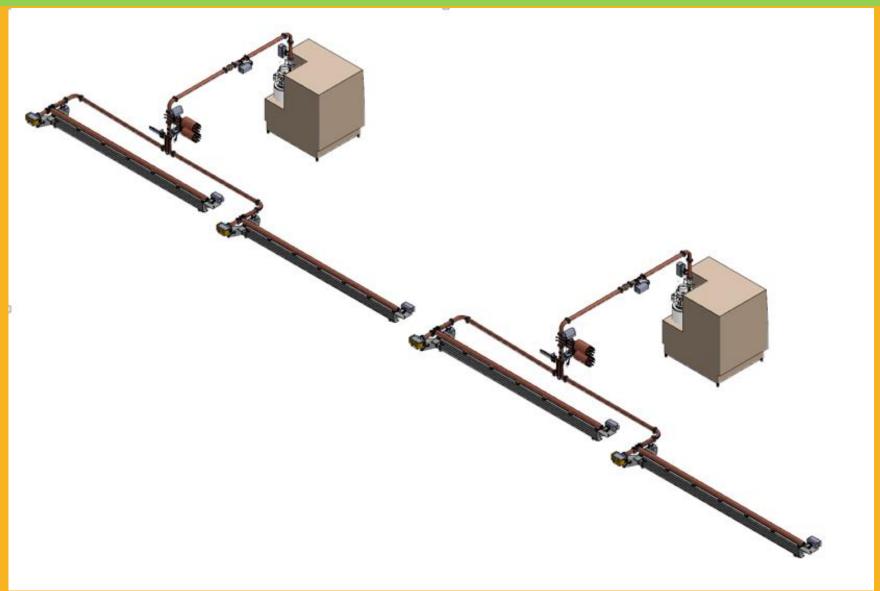
- RF Guns improving and development
- **RF power** upgrading (to the Linac)
- RF Circulator in vacuum (cooperation with HEIP China)


The new Photocathode RF Gun

Next Photocathode RF Gun, will be build at MAX-lab based on RadiaBeam drawings


Some of improvements are:

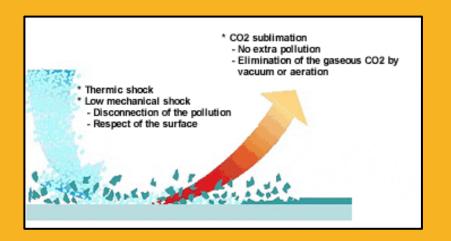
- 1. Dual RF feed
 - 2. Increased the mode seperation from 3 to 15MHz
 - 3. The iris between two cells was reshaped to reduce its surface field
 - 4. Z-coupling and increasing the radius of the edges
 - 5. Improved cooling channels
 - 6. New cathode mounting


RF power upgrading (to the Linac)

Dionis Kumbaro

RF power upgrading (to the Linac)

Dionis Kumbaro

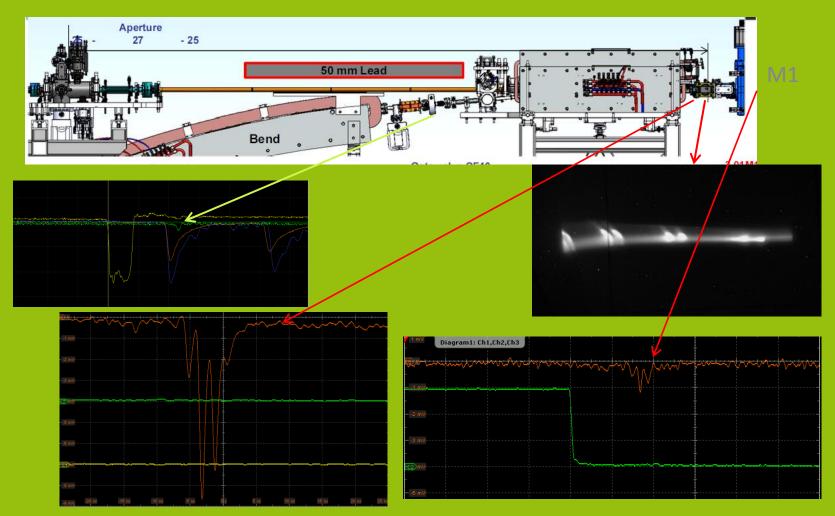

Dry Ice Blasting

Working principles:

The process consists in throwing particles of dry ice on the surfaces to be cleaned. The impact of the dry ice particles allows to conjugate three effects:

- 1. A weak mechanical shock with a compression wave disconnecting the pollution of the support
- 2. A thermic shock, (the dry ice temperature being 78°C) which is going to weaken the pollution
- 3. A blowing effect connected to the sublimation of the CO2 is going to eliminate the pollution

His Majesty the King visiting MAX IV Linac



- Do you know what you are doing here? asked His Majesty Carl XVI Gustaf

Dionis Kumbaro

Full answer to the King's question got on week 33 – Linac commissioning (week 33)

• Beam observed at the end of TR3 and into the ring !

Many thanks to my RF group colleagues and all collaborators, Very kind of you to visit us and pay attention to this presentation

Dionis Kumbaro