

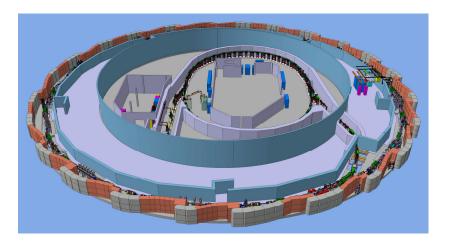
Elettra Sincrotrone Trieste

Present Status of the Elettra RF System

M. Bocciai, V. Ingravallo, C. Pasotti, M. Rinaldi

Content

- ✓ The Elettra Facility & the RF system
- ✓ Elettra UP-TIME and MTBF
- ✓ RF Fault Survey
- ✓ Beam Dump Monitor and RF signals
- ✓ RF Power Source Statistic
- ✓ Cavity replacement
- ✓ Conclusion



The Elettra facility

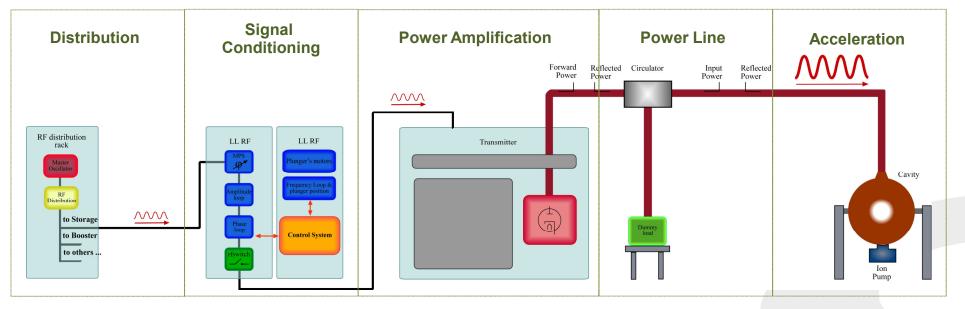
✓ 3rd generation light source 2.0 - 2.4 GeV

Full Energy Injector (2008): 100 MeV conventional LINAC +2.5 MeV Booster
Storage ring (1994) double bend achromat Ring circumference 259.2 m Emittance 7 nm-rad & 1% coupling Beam Dimension @ IDs 250/14 μm Beam Length nat.=25 ps, with 3HC > 100 ps

- ✓ 310 mA (2.0 GeV) and 160 mA (2.4 GeV) Standard filling 410/432 bunch train Hybrid filing 410 bunch train + single bunch
- ✓ **TOP-UP**, $\Delta I = 1$ mA, time span= 5 ÷ 20 min
- ✓ 5000 hours/year scheduled for the user
- ✓ 27 beam lines + 2 under construction
 - 22 ID segments + 1 SCW 3.5 T (2015)
 - 6 bending magnet sources points
- ✓ goal uptime > 95%

The RF System

Nominal Frequency 499.654 MHz Storage ring ΔE /turn \approx 300 keV


Storage ring

Booster

4 RF stations 1 station NC single cell copper cavity 3x 60 kW klystron plants 1x150 kW 2*I.O.T.s plant Power dissipation @ Vacc [kW] 120 Power to the beam @ 2.0 GeV [kW] 100 Max Available Power [kW] 310

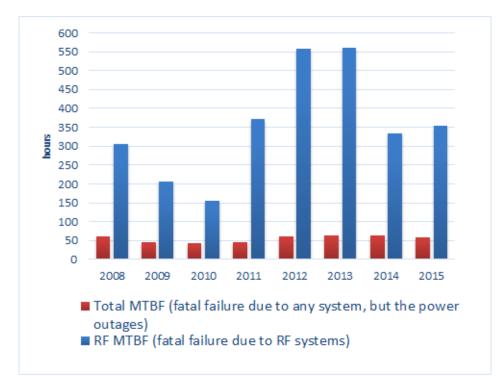
5 cells Petra type cavity 1x60 kW klystron plant

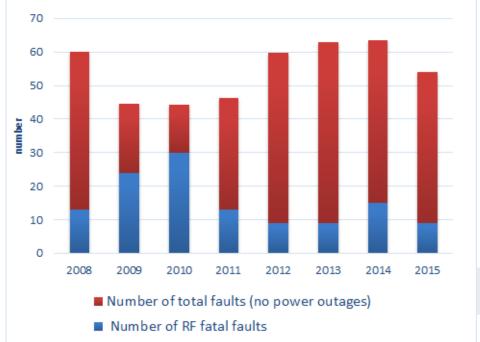
Power dissipation @ Vacc [kW] 14 Power to the beam @ 2.5 GeV [kW] 2 Max Available Power [kW] 55

19th ESLS RF Meeting – MAX IV, Lund

Elettra UP-TIME

- ✓ Statistic shown from 2008 (full energy injector)
- Top up operation from 2010: at beginning the machine achieved the top up for 95% of the operating time, now more than 98% of the operating user time
- Typically power outages are less than 2% of the total number of failures, but they weight more than 30% of down time
- ✓ Mean failure duration ≈ 1.5 hour
- So far, user UP-TIME > 95% goal always achieved, but statistic does not include electrical grid failures/outages
- ✓ Y-2015 statistic data up to August




- ✓ Data about the Mean Time Between Failure refers to the scheduled user time and fatal failure (it means beam completely lost or its intensity drops below 50%).
- \checkmark Top Up downtime not yet an issue.
- ✓ 2015 data up to August

Average RF MTBF

≈ 355 hours

Average number of RF failure ≈ 16/year

RF Fault Survey

Up to 2014: Main RF failure due to the POWER COMPONENTS, I.O.T.s, Transmitter's Hardware & Circulator Arc.

In 2015: The RF power components almost disappear in the fault item list to let room for the "cavity vacuum interlock" and "tune out of range".

- Cavity vacuum never due to the hardware or real vacuum troubles!
- "Tune out of range" means the tuning feedback diverges and brings the tuning to the limit range

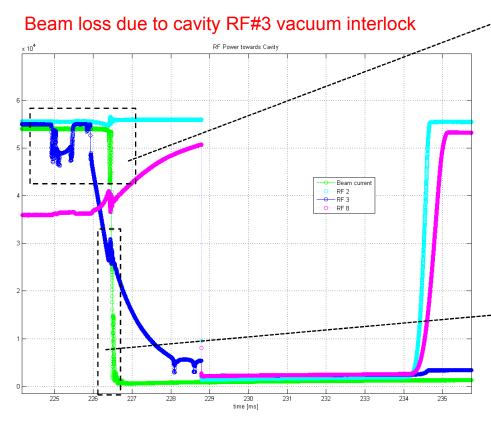
RF Fault Survey

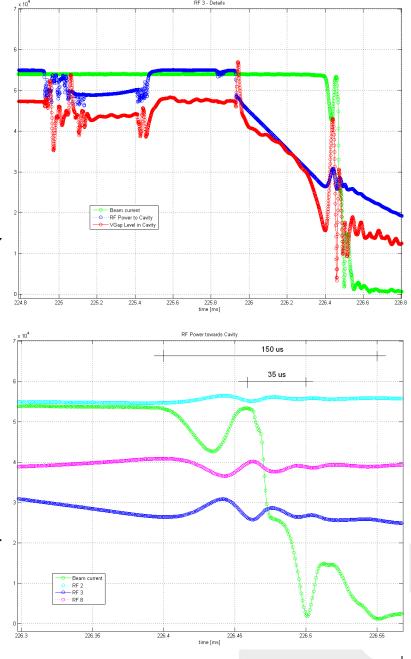
"Tune Out of Range" Fault:

- It started after the new electronic board was installed (phase detector dynamic range > 50 dB)
- It occurs randomly on each cavities, no preferences
- When happen it is always at beginning of new injection, after some beam losses, <u>causing some delay of injection</u> (the cavity shall be tuned back manually and it is downtime). Sometimes it happened in coincidence with a beam loss due to cavity vacuum trip
- Action: haunting what's happening with a scope monitor (so far ...nothing...) and new board to "blind" the phase detector for few msec in coincidence with sudden and abrupt cavity phase variation.

"Cavity Vacuum" Trip:

- This trip always kills the beam, sometimes it was causing also "tune out of range" fault on a second cavity
- It occurs mostly on cavity #3 and #8.
- Half of the time it happened suddenly, half of time at a certain current level during injection, but it was not reproducible
- They happened during 2 runs: from March to June
- Action: Very likely these trips are due to some instability, but its detection was below the monitoring/ recording capability. Need of fast detector on RF signals together with current signal. So far no more fault from September.

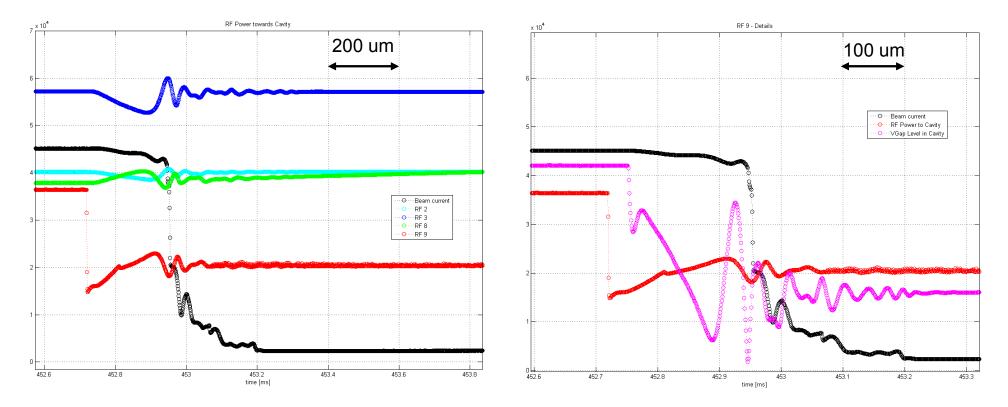

Even if Elettra has a really huge amount of operating hours it still surprising us!



Beam Dump Monitor and RF Signals

To monitor and analyse the beam dump it has been developed in house a board to sample analogue signals synchronized with the beam current drop: 1 sample/1 turn (1.16 MHz frequency) and data log length > 400 msec (Carniel et al., Diagnostic Group)

So far only the RF signals are monitored (forward power, cavity signal sample and reflected power).



Beam Dump Monitor and RF Signals

Beam loss due to hardware fault of one of the RF #9 I.O.T. transmitter

Preliminary data!

Some calibration of the acquisition data is still required,

but it is a really useful tool to check the RF performances!

RF Power Source Statistic

Transmitter	Tx-A		Tx-B			
Heater time*	46300		45900			
Tube	E2V D2130		E2V D2130			
serial number	302 - 1017		368 - 1208			
installation date	2010 June		2012 June			
Year	operating hours	trip	operating hours	trip		
2010	3700	7				
2011	10700	4				
2012	15500	3	3250	3		
2013	20650	0	9650	1		
2014	25580	0	15110	2		
2015*	29400	0	19120	0		
* August, 2015						

150 kW twin I.O.T.s based transmitter, in operation from 2006 Output power is the sum of 80 kW + 80 kW by means of a switchless WG hybrid combiner


RF Station	klystron	s/n	tube hours*	heater hours*
Booster	K3672 BCD	1083-0351	39760	113670
RF #2	K3672 BCD	1184-0823	35040	127030
RF #3	YK1256	14105.265	22740	128620
RF #8	K3672 BCD	1184-0823	34850	128130
* August, 2015				

Cavity replacement

June 2015

- Replacement of the RF#2 cavity. It was the oldest one, installed in the storage ring in 1994.
- Three working weeks, from removal to full RF power conditioning (cavity already conditioned in the RF lab)
- RF#2 vacuum =2.9 10⁻⁹ mbar after 1500 hours with beam others cavities's vacuum ≈ 1.3 10⁻⁹ mbar

At Elettra all the cavities are now "new", with a power dissipation capability > 66 kW (V acc > 650 kV)

WHEN it does not work...

Transmitter's items, Klystron and I.O.T. snapshot coming soon!

19th ESLS RF Meeting – MAX IV, Lund

- Maintenance and servicing it is a must for so old machine!
- Revamp the electronic may prove not so quite straightforward
- Never forgot the beam dynamic, even tough you'll think every thing is well known
- Control room team shall have a continuous training, at least one/year
- Cavity replacement really straightforward!
- Several collaborations in progress:
 - *four Elettra cavities for the SESAME facility (Jordan Middle East)*
 - one Elettra cavity for the INDUS II facility (Indore India)
 - ESS collaboration for the spoke cavity transmitters
- The Elettra 2 project (Ultimate Storage Rings 2.0 GeV 400 mA) is in progress
- The RF power project: news very soon...

Thank you!

19th ESLS RF Meeting – MAX IV, Lund

C. Pasotti, 30 Sep - 1 Oct 2015 | 16

<mark>Elettra</mark> Sincrotrone Trieste

www.elettra.eu