

Experience with RF systems at DELTA

P. Hartmann DELTA, TU Dortmund

DELTA parameters:

Beam energy: 550 MeV – 1.5 GeV Beam current: 130mA @ 1.5GeV Beam lifetime: 16h @ 130 mA A. Leinweber Availability: 95 % Operational: 3000 h / year

<u>RF Group:</u>

P. Hartmann V. Kniss

DELTA's RF systems

Work done on RF systems:

03/2021: LINAC S-Band Klystron replaced

03/2021: Defective module in Booster-SSA after power outage

08/2020: DELTA phase modulation scheme transferred to LLRF

02/2020: RF GUI: Cavity phasing changed

10/2019: SR: RF Interlock scheme changed due to insufficient damping of LLRF internal PIN Diode for rad. prot. purpose

08/2019: Booster SSA: Broken PLC changed

Storage Ring LLRF calibration

LLRF calibration check with beam

Phase Noise

Phase Noise

(Analyzer and Master generator)

Phase Noise (Booster)

<u>Phase Noise</u>

(Storage Ring)

Cavity Shunt Impedance

<u>Measure Shunt Impedance</u> <u>Method 1: Measure cavity voltage and fwd power</u>

$$R_s = \frac{U_{cav}^2}{2P_{fwd}}$$

U _{NRVS} / V	U _{cav} / kV	P _{fwd} / kW	${\sf R}_{\sf S}$ / M ${\sf \Omega}$
1,937	307,0	11,91	3,96
2,259	358,0	16,25	3,94
2,517	398,9	20,25	3,93
1,614	255,8	8,25	3,97
1,291	204,6	5,27	3,97

$R_s = 3.954 \pm 0.034 \,\mathrm{M}\,\Omega$

Cavity Shunt Impedance Beam based measurements

<u>Cavity impedance</u> without beam loading

$$Z_{C}(\omega_{r}+\Delta \omega) = \frac{R_{S}}{1 + iQ(\frac{\omega_{r}+\Delta \omega}{\omega_{r}} - \frac{\omega_{r}}{\omega_{r}+\Delta \omega})}$$

$$\stackrel{\Delta \omega \ll \omega_{r}}{=} \frac{R_{S}}{1 + iQ(\frac{2\Delta \omega}{\omega_{r}})}$$

$$= \frac{R_{S}}{1 + Q^{2}(\frac{2\Delta \omega}{\omega_{r}})^{2}} - i \frac{R_{S}Q(\frac{2\Delta \omega}{\omega_{r}})}{1 + Q^{2}(\frac{2\Delta \omega}{\omega_{r}})^{2}}$$

$$\rightarrow \text{Cavity phase:} \quad \tan(\phi_{C}(\omega_{r}+\Delta \omega)) = \frac{\Im(Z_{C})}{\Re(Z_{C})}$$

$$= -Q \cdot \frac{2\Delta \omega}{\omega_{r}}$$

Beam Loaded cavity impedance

In case of match $(Z = Z_{g})$:

1.
$$\beta = 1 + \frac{2I_{DC}R_{S}}{U_{C}}\cos(\phi_{S})$$

2. $0 = Q_{0}\xi - \frac{2I_{DC}R_{S}}{U_{C}}\sin(\phi_{S})$

<u>Measure Shunt Impedance</u> (Method 2: Use real part of Z)

Cavity 2 reflected power at 387 kV cavity voltage (cav1 detuned)

The measurement of the minimum reflected power vs. beam current is disputable, because of the limited directivity (typ: -30dB, ours: < -42dB) of the directional coupler used to measure the reflected power:

A large forward power generates a false signal of the order of magnitude of the measured returned power in the reflected power line.

<u>Shunt Impedance</u> (Method 3: Use imaginary part of Z)

$$\underline{\text{Imaginary part condition:}} \quad 0 = Q_0 \xi - \frac{2I_{DC}R_S}{U_C} \sin(\phi_S)$$

with
$$Q_0^{\Delta} \xi = (1+\beta)Q_L \cdot \frac{2\Delta\omega}{\omega_r} = -(1+\beta)\tan(\phi_c)$$

Cavity detuning angle:
$$\tan(\phi_C) = -\frac{2I_{DC}R_S}{(1+\beta)U_C}\sin(\phi_S)$$

Beam current dependent inductance of cavity, compensated by tuner loop.

Measurement procedure

- 1. Prerequisites:
 - Good measurement of loaded Quality factor Q_{L}
 - Constant cavity temperature
- 2. Calibrate plunger stepper motor steps with frequency deviation From measured $Q_{\rm L}$ $\rightarrow\,$ Relation btw. psm-steps and cavity phase $\Phi_{\rm c}$
- 3. Measure psm-Steps with increasing beam current
 - Slope gives measured cavity shunt impedance $\rm R_{s}$

Typical measurement

Frequency / MHz

Summary & Outlook

- The LLRF, SSA and EU cavity run with only minor hickups for more than 2 years
- LLRF FPGA software changed by manufacturer to fulfill rad. prot. demands
- The LLRF voltage and power mesurement calibration is good
- Phase noise is generated by the externel reference (already uninstalled) and by the klystron (power supply?!)
- The shunt impedance ${\sf R}_{_S}$ of the EU-type cavity was measured to be 3,97 $M\Omega$

- Next step: Install second LLRF in booster
- If funded: Replace storage ring klystron with SSA

Acknowledgements

Vadim Kniss, Andreas Leinweber

DELTA Team

University electronics workshop

University mech. workshop

Literature:

- T. Weis: Interaction between RF-System, RF-Cavity and Beam, Riezlern, Austria 2005
- K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen
- H. Wiedemann: Particle Accelerator Physics
- P.B. Wilson: Transient Beam Loading in Electron-Positron Storage Rings, SLAC-PEP-Note 276
- D. Boussard: Beam Loading, Cern Accelerator School, CERN, Geneva, Switzerland
- A. Hofmann: Beam Instabilities, CERN, Geneva, Switzerland
- M.G Minty, F. Zimmermann: Measurement and Control of Charged Particle Beams

Thank you for your attention