

ESS RF Systems

Rutambhara Yogi & RF group

www.europeanspallationsource.se 12 December, 2016

Outline of talk:

- Introduction to ESS
- RF Systems
- High Power Amplifiers
 (IOT, Klystron, Tetrode, Solid State)
- **RF** Distribution

European Spallation Source (ESS)

Ground breaking: Jan Björklund (Swedish Research minister), Sofie Carsten Nielsen (Danish Research minister:2 September 2014 Most powerful neutron source in the world by end of the decade

>22 European countries as partnersBeing constructed in Lund, Southern Sweden

Accelerator buildings

ESS Linac

Long pulsed superconducting linac Proton beam current = 62.5 mAAverage proton beam power to the target = 5MW Peak beam power to target = 125 MW Beam pulse width = 2.86 ms Pulse repetition frequency = 14 Hz

5 times more than SNS 7 times more than SNS

Aim:

•

- First beam at 572 MeV in June 2019
- 5 MW capacity for 2023

RF Group Responsible for:

- Providing RF power to proton beam Amplifiers, Preamplifiers, RF Distribution, Modulators.
- Arc detection on RF systems and cavities
- Slow and fast Interlocks on RF systems & Fast Interlocks on cavities
- Quench detection on cavities
- Start up procedure of the cavities
- LLRF
- Master Oscillator
- Phase reference line

RF Power profile

RF Source requirements for MB/HB

- Medium Beta
 - 36 transmitters
 - Based on 1.5 MW klystron, 704 MHz
 - One transmitter chain per cavity, one modulator per 4 klystrons
 - Three prototypes (Toshiba, Thales, CPI) developed by ESS
- High Beta
 - 84 transmitters
 - Based on 1.2 MW IOT, 704 MHz
 - Medium Beta klystrons as backup
 - Otherwise similar to medium beta
 - Two prototypes (L3, Thales-CPI consortium) developed by ESS

Courtesy: Morten Jensen

Medium (and High) Beta amplifiers

EUROPEAN SPALLATION SOURCE

Medium Beta

200 kW to 866 kW (plus 30%) -> saturated power from klystrons up to 1.15 MW

Klystron specifications

Nominal output power	1.5 MW
Frequency	704.42 MHz
BW	≥ +/- 1 MHz
Pulse width	3.5 ms
Repetition rate	14 Hz
Conversion Efficiency	>60% (at saturation)
VSWR	Up to 1.2
Power Gain	\geq 40 dB (may be increased)
Group Delay	≤ 250 ns
Harmonic Spectral content	≤ -30 dBc
Spurious Spectral content	≤ -60 dBc

High Beta 835 kW to 1.1 MW (plus 30%) 1.2 MW MBIOTs (or klystrons as backup)

MBIOT specifications

Peak output power	> 1.2 MW
Frequency	704.42 MHz
BW	≥ +/- 1 MHz
Pulse width	3.5 ms
Duty factor	Up to 5%
Conversion Efficiency	>65% (at point of operation)
Overall efficiency (including idle current)	>65%
Gain	> 20 dB
Beam Voltage	< 50 kV
Beam current	< 45 A rms
Tube life	≥ 50 khrs

Medium Beta klystrons

4.5 Cells of 8 klystrons for Medium Beta 10,5 Cells of 8 klystrons (MBIOTs) for High Beta One 660 kVA modulator will power 4 klystrons

MBIOT - Possible Gallery Layout

EUROPEAN SPALLATION SOURCE

Layout compatible with Klystron layout (Important for utilities and building constraints)

Gallery design compatible with both MB-IOT designs 4 Tubes per HV supply

One driver rack per MB-IOT

HV-Deck for Filament and Grid supplies placed above the tube (Details will depend on final filament/grid requirements)

Medium Beta klystrons

- Thales prototype contract placed January 2015
 - First pass Arcing in window region
 - Factory Acceptance Test cancelled
 - Tube opened for inspection
 - Additional failure analysis and extra window design review held
 - New window brazed
 - Braze failed quality inspection
 - New parts ordered
 - Problem with vacuum
 - Factory Acceptance Test expected in Dec, delivery in Jan 2017
- Toshiba prototype contract placed February 2015
 - Delivered (March 2016)
- CPI prototype contract placed April 2015
 - Factory Acceptance 28 September (not observed)
 - Observed Factory Acceptance test week of 10 October 2016
 - Phase is not monotonous.
 - New FAT expected in November 2016

Toshiba klystron E37504 prototype

Some results from the Factory Acceptance Test (February 2016):

Thales klystron prototype TH2180

The tube has been tested at factory at full power for few days in May 2016. Saturated efficiency 66%.

Operation at low beam voltage: efficiency can be increased by using a mismatch at the output (post). Preliminary results (can be improved):

1.5 MW 65% 600 kW 55% 80 kV

EUROPEAN SPALLATION

SOURCE

CPI results (Preliminary Factory Tests)

Transfer curve at nominal 111 kV

Multi-Beam IOTs for ESS

EUROPEAN SPALLATION SOURCE

10 Beam Multi-Beam IOT 1.2 MW 704 MHz Two Contracts for Technology Demonstrators

- Thales/CPI Consortium
- L3

Contracts signed in September 2014

Project duration: 24 months

microwave power products division

Solid State Driver

TOMCO 15 kW driver being used for Factory Testing at L3

Single Rack Configuration

Operating Frequency	699 – 709 MHz
Output Power for 5 dBm input	15 kW PEP
Gain linearity	+/- 0.5 dB
Pulse width	Up to 4 ms
Duty	Up to 10%

Preliminary Results

Comparison to Klystron

Latest transfer curve

EUROPEAN SPALLATION SOURCE

900 kW at 6% duty (200 micro s and 300 Hz) 1.2 MW at 2% duty (100 micro s and 200 Hz)

Droop limits the voltage to 44.8 kV but with 1.4 kV droop. Nominal should be 45 kV.

- Spoke:
 - 26 RF power stations
 - 400kW, 352 MHz
 - Output of two TH595 tubes combined
 - One High voltage power supply powers two tetrodes

RF Source requirements for SPK

3.25 cells of 16 Tetrodes Spoke Gallery

Preliminary Prototype tested at FREIA

Performance of RF power station

Courtesy: Magnus Jobs at FREIA

High Power RFDS

- All high power RFDS Inkind
- For Cold linac Inkind by UK (STFC & HU)
 - Responsibility for design: ESS
 - Procurement and Delivery at site: UK
 - Design and delivary of support structure: UK
- For Warm linac Inkind by ESS-Bilbao
 Design, procurement, delivery ESS-Bilbao
- Installation: ESS with polich inkind
- Installation: ESS with polish inkind
- Testing and commissioning: Involvement of UK, ESS-Bilbao, Responsibility of ESS

Concept of High Power RFDS layout

EUROPEAN SPALLATION SOURCE

Rutambhara Yogi

Approximate Numbers for Cold Linac

Component	Spoke	Elliptical
Waveguide	550m	2725m
H bends	130	600
E bends	78	600
Bellows	97	480
DC	78	360
Arc detectors	104	480
Circulators, loads & switches	26	120
Coax elbows	52	

Flange and waveguide design

Waveguides by EXIR are installed in FREIA

Costs by metal manufacturers expected to be 20-30% cheaper than RF companies ~ MEUR

Waveguide extends through

Fabrication becomes extremely

the flanges

Received prototypes from two companies.

- 1: Waveguides and elbows (tender documentation being prepared)
- 2: Standard components (Tender evaluation, standstill period)
- 3: Support structure (Design in progress, prototype for test stub installation)*
- 4: Loads and Circulators (tender ready. Will be uploaded in this week)
- 5: Arc detectors (Decision to be taken in ESS group in next week)
- 6: Swiches, Windows, Connections to Klystron,

Connections to SPK RF power station etc

HB / MB Linac: New development of loads

EUROPEAN

SPALLATION SOURCE

Rutambhara Yogi

New Load development for ESS Hot water cooled loads

Prototype by Thales will be delivered soon.

EUROPEAN SPALLATION SOURCE

Rutambhara Yogi

MB/HB prototype circulators:

AFT: Delivered at ESS- Similar to that delivered to CERN.
Change – configuration is T: to reduce two elbows
FMT: Passed FAT, Will be delivered at ESS very soon

MEGA: FAT will be in next month

Stub Mockup for High Beta Linac

Gallery

EUROPEAN SPALLATION SOURCE

Earlier building layout

Stub

- Length optimization of Waveguides : to have minimum flange joints in the stub
- Layout optimization (minimum distance between flange and stub wall), to have maximum possible space for cables.
- Extremely important for building layout. So Mockup was performed

Stub Mockup with wooden waveguides and stub

- So installation is very difficult for SPK stub
- Full test mock up is planned in Jan 2017 using the actual stub

EUROPEAN

SPALLATION SOURCE

Preliminary concept for the Stub Support Structure

- Prototype under construction.
- Will be tested in test stub mockup at ESS site in Jan 2017.

Thank you !

Rutambhara Yogi