

Present Status of KARA RF System

Akira Mochihashi On behalf of Institute for Beam Physics and Technology (IBPT) and Laboratory for Applications of Synchrotron Radiation (LAS) team at KIT

Institute for Beam Physics and Technology (IBPT), Karslsruhe Institute of Technology (KIT)

Contents

- Introduction: The <u>KA</u>rlsruhe <u>R</u>esearch <u>A</u>ccelerator <u>KARA</u>
 - Microtron, Booster Synchrotron and Storage Ring
- RF System in KARA Storage Ring
 - Overview
 - Cavities and Control System
- Trouble Report in 2019
 - Failure at Isolation Transformer in High Voltage Station for Storage Ring Klystron
- Research and Development
 - HOM in the Cavity
 - RF Phase Modulation
 - Improvements and Updates

Introduction (1) KArlsruhe Research Accelerator

Extended DBA Lattice (Dispersion>0 in straight section) Designed Emittance = 59 nm-rad

Beam Energy	< 2.5 GeV
Circumference	110 m
RF Frequency	499.7 MHz
Harmonic Number	184
Number of RF Station	2
Number of Cavity in 1-Station	2
Acc. Voltage	1.4 MV (2.5 GeV)
Ring Lattice	DBA

Introduct	ion (2) KArlsruhe	Research Accelerate	or Karlsruhe Institute of Technology
	Nikrotron 90 keV - 53 MeV	Booster 53 MeV - 500 MeV	Mikrotron
Beam Energy	< 53 MeV	Beam Energy	< 500 MeV
RF Frequency	2.999 GHz	Circumference	24 m
Number of Turns	10 (up to 53 MeV)	Harmonic Number	44
Linac Structure	(1/2+7+1/2)Cells, Side Couple	Number of RF Station	1
Mode	П/2 mode	Operation Rep. Rate	1 Hz

4 25/10/19 Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

RF System in KARA Storage Ring (1)

Parameters	500 MeV (Injection)	2.5 GeV (User Operation)		
RF / Revolution Freq.	499.7 MHz	z / 2.72 MHz		
Harmonic Number	184			
Total RF Voltage	300 kV (Typ.)	1.4 MV (Typ.)		
Energy Loss per Turn	995.9 eV	622.4 keV		
Synchronous Angle	0.05 deg.	6.38 deg.		
Momentum Compaction	0.0105	0.00867		
Synchrotron Frequency	35.0 kHz	34.0 kHz		
Energy Spread (rms)	1.82×10 ⁻⁴	9.08×10 ⁻⁴		
Bunch Length (rms)	8.67 ps	36.9 ps		
Total Klystron Output	5.2 kW (150 mA)	140 kW (140 mA)		
Ramping Time	-	3 minutes		
Tuner Dead Band	0.1~0.5 deg.	0.1~0.5 deg.		
Typical Filling Pattern	Partial (30~33x3 bunches) or (30~33x4 bunches)			

Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

25/10/19

RF System in KARA Storage Ring (2)

- RF Cavity (2Cavs/Station)
 - ELETTRA Type Cavity
 - Q₀~40000, R_{sh}~3.3MΩ
 - Vc = 350kV/Cavity (@2.5GeV)

- Cavity Cooling System
 - 1-Chiller for each Cavity
 - Settled Temp. = 40~60degree
 - Controllable for each Cavity independently

Several times per one year, we have to change the cavity temperature to suppress longtitudinal coupled bunch instability at 500 MeV.

RF System in KARA Storage Ring (3)

RF Control System in KARA <u>Setup for One RF Sector</u>

LLRF Control Module

DIMTEL LLRF 9/500

- 1-Module per 1-Station (2 Cavities)
 - The cavity pickup signals are vectorsummed and processed in LLRF.
 - The phase adjustment between 2 station are necessary.

Option: modulations for output signal are available.

Signal	Symbol	Ratio to $f_{\rm rf}$	Frequency (MHz)
Reference	$f_{ m rf}$	1	499.654
IF	$f_{ m IF}$	$\frac{1}{12}$	41.6378
Local oscillator	$f_{\rm LO}$	$\frac{11}{12}$	458.0162
ADC clock	$f_{ m ADC}$	$\frac{11}{48}$	114.5040
DAC clock	$f_{ m DAC}$	$\frac{11}{24}$	229.0081

akira.mochihashi@kit.edu Instutute for Beam Physics and Technology (IBPT)

25/10/19

Trouble Report in 2019 (1)

Trouble at Isolation Transformer (IT) on high volgate deck for klystron power supply at one of the 2 RF-sectors (10.01.2019)

failure of the anode current monitor.

Trouble Report in 2019 (3)

- The way to the recovery
 - Attempt to operate the storage ring with one RF-sector
 - It was possible, but we could not store enough beam current.
 - Dismounted the transformer and the anode current monitor
 - The anode current interlock has never happened for 20 years.
 - We can check the anode condition by monitoring temperature of the klystron body which comes from near to the anode part.

We spent 8 days to recover from this failure.

Research and Development (1) : Cavity HOM

Probable Modes of Longitudinal Coupled Bunch Instability

From CST studio simulation with simplified 3D model

	Modes	Frequency (GHz)	Q	R _{sh} /Q (Ω)	R _{sh} (Ω)
	TM011	0.946751	45583	5.28×10 ⁻⁵	2.40657
	TM210	0.991593	57797	1.41×10 ⁻⁶	0.08175
[TM020	1.06244	60660	357	21679826
	TM021	1.420783	52894	3.724×10 ⁻⁵	1.9697
[TM022	1.514722	61113	94	5718466
[TM030	1.617131	73132	355	25971120
	TM031	1.876905	53580	9,10×10 ⁻⁷	0.04868
	TM032	1.948799	75495	11	839384
[TM040	2.092726	58366	620	36201862

Research and Development (2) : Cavity HOM

Threshold Currents and Dangerous Modes at 500 MeV

Radiation damping time at 500 MeV = 180.4 ms

	Modes	Frequency (GHz)	R _{sh} /Q (Ω)	l _{th} (mA)	Mode	
	TM011	0.946751	5.28×10 ⁻⁵	-	-	
	TM210	0.991593	1.41×10 ⁻⁶	·	-	
[]	TM020	1.06244	357	3	23	
	TM021	1.420783	3.724×10 ⁻⁵	-	-	
Ε	TM022	1.514722	94	8	6	
E	TM030	1.617131	355	5	43	
	TM031	1.876905	9.10×10 ⁻⁷	-	-	
	TM032	1.948799	11	88	166	
E	TM040	2.092726	620	2	34	

Very low threshold current

Research and Development (3) : Cavity HOM

Threshold currents for each HOM

- Longitudinal coupled bunch instability at 500 MeV
 - The instabilities happen daily from lower beam current (~ 1 mA) at 500 MeV
 - The instabilities limit the maximum injection current at present KARA

How to supress

- Bunch-by-Bunch feedback system is in operation, but difficult to suppress in higher beam current
- Changing the cavity temperature, synchrotron frequency, horizontal beam orbit at cavity section etc.

Some additional ways to fight against the instabilities would be necesary.

Research and Development (4) : Phase Modulation

- Beam Manipulation by RF Phase Modulation
 - Tuning knobs: modulation frequency and amplitude
 - Using twice of synchrotron frequency to excite quadrupole mode on the longitudinal phase space

Simulation: amplitude = 100 mrad at 150 mA

- Interests:
 - Characteristics of frequency detuing condition
 - Dependence of bunch length on the excitation amplitude
 - Beam current dependence
 - etc.

Research and Development (5) : Phase Modulation

Systematic Measurement of RF Phase Modulation: Detuning condition

Simulation

Experiment

akira.mochihashi@kit.edu Instutute for Beam Physics and Technology (IBPT)

15 25/10/19 Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

Research and Development (6) : Phase Modulation

Systematic Measurement of RF Phase Modulation: Amplitude dependence

- Characteristics of bunch lengthening by phase modulation
 - Frequency detuning: slightly asymmetric
 - Amplitude dependence: detuning curves change with different amplitudes

A. Mochihashi et. al., IPAC 2019 Proceedings, p.3123

akira.mochihashi@kit.edu Instutute for Beam Physics and Technology (IBPT)

Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

17 25/10/19 Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

Improvements and Updates (1)

- Renewal of klystron heater power supply
 - The power supply has been renewed when the klystron interlock system has been changed because of its trouble.

Old setup (sector-2) : Power supply + monitoring device

New setup (sector-4) : Power supply + PLC

Improvements and Updates (2)

Ongoing Project

- Renewal of master oscillator
 - Lower phase noise and sufficient stability for long term drift
 - The new master oscillator has been already at hand. Integration into the control system is going on now.
- Renewal of pre-amplifiers
 - (3 GHz, 250 W, pulse) for microtron linac
 - (500 MHz, 50 W, CW) for storage ring
 - The production is going on. The new ones are comming next year.
- Refurbishment of klystron interlock system
 - From self-made system to PLC system (already done in 1 RF sector)
- Renewal of temperature compensation system of 500 MHz circulator for storage ring
 - Temperature compensation unit and cabes plan to be renewed in next year.

Thank you very much for your attention!

Ricky's Lengthening

Lengthening Condition Not Good... Lengthening Condition Very Nice!

Backup Slides

25/10/19 Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

22

Beam Quality: Energy Spread (2) Undulator

 λ_{u} =20mm, N_p=75, K=0.1, κ_{xy} =0.1%, 1st harmonics=2.96 keV

akira.mochihashi@kit.edu Instutute for Beam Physics and Technology (IBPT)

Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

23 26/28/19.2018

RF Phase Modulation: Preceding Study

- Can excite longitudinal quadrupole mode oscillation
- Can increase the bunch length (and energy spread)
- Can change (modulate) behavior of the longitudinal coupled bunch instability

Example in KEK (in Japan) Photon Factory (2.5 GeV)

S.Sakanaka et al., PRST-AB 3 050701 (2001)

akira.mochihashi@kit.edu Instutute for Beam Physics and Technology (IBPT)

24

RF System in KARA Storage Ring: Operation(1)

- 2 Longitudinal Modulation Schemes
 - Modulation by Kicker Cavity

- At the beam injection (500MeV), the kicker cavity is driven to excite quadrupole mode on the beam.
- The bunch lengthening occurs and the injection rate tends to be stabilized/improved.

Phase Modulation & Beam – Cavity Interaction

Phase Modulation:

Generator Voltage with P.M.:

Beam Induced Voltage:

$$= -q \frac{R_{sh}\omega_0}{2Q_0} e^{-\frac{\sigma_z^2 \omega_0^2}{2c^2}} e^{i\frac{\omega_0 z}{c}}$$

$$V_b \to V_b - q \frac{R_{sh}\omega_0}{2Q_0} e^{-\frac{\sigma_z^2\omega_0^2}{2c^2}}$$
$$V_b \to V_b e^{\left(i\omega_0 - \frac{\omega_0}{2Q_L}\right)\Delta t}$$

Bunch Spacing:

26

25/10/19

1-Bunch Passing:

Present Status of RF System in KARA ESLS-RF Workshop 2019 in Diamond Light Source

RF Phase Modulation: Equation of Motion

Half of the Ring with RF Cavity 1&2

$$\Delta \delta_{1} = q \frac{\mathcal{R}[(\widetilde{V}_{1} + \widetilde{V}_{2})e^{i\omega\tau_{1}}] - \frac{U_{0}}{2}}{E_{0}} - \frac{J_{e}U_{0}}{2E_{0}}\delta_{1} - [\text{Additional Loss 1}]$$

$$\delta_{1} \rightarrow \delta_{1} + \Delta \delta_{1} \stackrel{\text{def}}{=} \delta_{2}$$

$$\Delta \tau_1 = \frac{\alpha_c T_0}{2} \delta_2$$

$$\tau_1 \to \tau_1 + \Delta \tau_1 \stackrel{\text{\tiny def}}{=} \tau_2$$

Half of the Ring with RF Cavity 3&4

$$\Delta \delta_2 = q \frac{\mathcal{R}[(\widetilde{V_3} + \widetilde{V_4})e^{i\omega\tau_2}] - \frac{U_0}{2}}{E_0} - \frac{J_e U_0}{2E_0} \delta_2 - [\text{Additional Loss 2}]$$

$$\Delta \tau_2 = \frac{\alpha_c T_0}{2} \delta_1$$

 $\delta_2 \rightarrow \delta_2 + \Delta \delta_2 + [\text{Radiation Excitation}] \stackrel{\text{\tiny def}}{=} \delta_1$

$$\tau_2 \to \tau_2 + \Delta \tau_2 \stackrel{\text{\tiny def}}{=} \tau_1$$

$$[\text{Additional Loss}] = \left(\frac{R_{sh1,3}\omega_{res1,3}}{4E_0Q_{1,3}} + \frac{R_{sh2,4}\omega_{res2,4}}{4E_0Q_{2,4}}\right)q^2e^{-(2\pi f_{rf}\sigma_t)^2}$$

[Radiation Excitation] =
$$\sqrt{\frac{2J_e U_0}{E_0}} \times \left[\text{Gaussian RND with } \sigma = \frac{\sigma_E}{E_0}\right]$$

RF System in KARA Storage Ring

- Low Level RF System (19inch,1-rack)
 - Based on DIMTEL LLRF System
 - (Klystron, Cavity tuner) control

28

- Klystron, Circulator and Waveguides
 - 250kW Klystron (EEV), 1Klystron/Station
 - Circulator (AFT), Magic-T ... Split into 2 ports