

1.5 GHz Cavity design for the Clic Damping Ring and as Active Third Harmonic cavity for ALBA.

ESLS-Meeting

ESLS-Meeting

Introduction

1/3 scaled and optimize

500 MHz HOM damped normal conducting cavity

1500 MHz ACTIVE HOM damped NC cavity

ESLS-Meeting

Introduction

Active cavity Proposal

Scaled and optimized HOM damped cavity

REQUIREMENTS		
Total VOLTAGE	1 MV	Ш
φoptimum	2.8 degrees	
FREQUENCY	1,5 GHz	
Beam power	0 kW	1/3 scaled and optimize
Nominal / maximum power dissipated per cavity	16⁄20 kW	
Number of cavities	4 or 5?	

ESLS-Meeting

- Phase of the cavity set to φ=0
- Amplitude loop. Same forward power with beam and not beam.

φ	Pforw∕cav (i=0 mA)	Pforw⁄cav (I=0,2A)	Pbeam/cav	Bunch length
-2,8	16kW	8 kW	-8 kW	3,3 σ
0	16kW	16kW	0 kW	3,7 σ

It was considered 4 cavities that provide 1.1 MV and shunt impedance, Rs= $2.4M\Omega$.

16/11/2017

ESLS-Meeting

Cavity design: Beam aperture

Rs dependence strongly on the beam pipe dimensions.

Constrains beam pipe diameter:

1. Electron beam aperture. Lattice

2. Synchrotron radiation.

Cavity design: Beam aperture

2. Synchrotron radiation

Ray Tracing

After the analysis the Beam pipe diameter was fixed to 46 mm

7

Body optimization

For high Rs and Q of the fundamental mode.

Final parameters: Rs=1,5 MΩ, Q=17000, V=215kV.

- Do not couple the fundamental mode.
- Maintain a low reflection response |S11|<0.3.

HOM analysis

- Maximum power dissipated in the ferrites of each damper will be 115W
- Ferrite C48 is not in the CST material library
 - Electric and magnetic properties data till 3GHz.
 - From 3GHz till 5 GHz we made a fit.

Fundamental mode (1,5 GHz)

HOM (1,86 GHz)

ESLS-Meeting

Surface roughness

- Hammerstad and Jensen (H&J) model.
- It assumes a triangular corrugated surface.

$$\alpha_{cond,rough} = \alpha_{cond,smooth} K_{sr} \qquad K_{sr} =$$

$$K_{sr} = 1 + \frac{2}{\pi} \arctan\left(1.4\left(\frac{\Delta_{rms}}{\delta_s}\right)^2\right)$$

$$\frac{R_{cond,rough}}{R_{cond,smooth}} = \frac{Q_{cond,rough}}{Q_{cond,smooth}} = \frac{1}{K_{sr}}$$

Δ _{rms} (µm)	K _{sr} (f=1.5GHz)	R/Q	R(MΩ)	Q	Vacc(kV) P _d =16kW	Vacc(kV) P _d =20kW
0	1	80.7	1.4	17337	211	236
0.6	1.11	80.7	1.26	15618	200	224
0.8	1.19	80.7	1.17	14569	193	216
1	2	80.7	0.7	8668	149	167

the surface roughness degrades the Rs and Q

ESLS-Meeting

INPUT COUPLER

- Power handling 32kW.
- Inductive coaxial loop.
- Distance between the aluminas, the width and the shape of the aluminas highly affects the matching.

PLUNGER

PLUNGER

15

PLUNGER

ESLS-Meeting

PLUNGER

- New design based on the Bessy 3HC plunger design in under development.
- The plunger degrades the quality factor and the Rs.
- Taking into account all the elements
 - Quality factor 14000
 - Shunt impedance 1.2 Mohms
- Number of cavities necessary 5, but we will install 4

Thermo/Fluid Calculations

FEM thermo-fluid simulations

Solver NX thermal flow

Materials:

• OFHC Cooper, Stainless steel and water.

Boundary conditions

- Total power dissipated in the body of the cavity is 20 kW.
- Perfect thermal contact between welded components
- Cooling: Water 30 I/min (Main body), 10 I/min (Front and Rear Lid). Inlet Temp 23 ºC.
- o Radiation and convection to environment

Constraints

• Max water velocity 2 m/s.

ESLS-Meeting

Thermo/Fluid Simulations

• After several design/simulation iterations, the simulation results shows a maximum temperature of 67 °C that is reached in the ridges edges located in the inner face of the cavity.

ESLS-Meeting

Thermo/Fluid Simulations

Water temperature (°C)

Steady state simulation Max. Water Temp. 28.33 °C

ESLS-Meeting

Detailed design of ferrite wedge

Implementation of ferrite wedge in Cavity Damper

ESLS-Meeting

100.16

Ferrite wedge assembly and cooling

90.14 79.99 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 Units = N/mm*2(MPa)

Detailed design of ferrite wedge

Max traction stress of 21.2 MPa at the top of tiles Max compression stress of 98 MPa at bottom corner

16/11/2017

ESLS-Meeting

Mechanical Design

Other details of the design

ESLS-Meeting

- The 1.5 GHz normal conducting cavity project should yield a substantial improvement in beam lifetime for the and as an effective accelerating cavity for the CLIC project.
- The plunger has to be re designed due to overheating problem.
- The adaptation of technology from the 500MHz HOM damped cavity construction project has allowed the development of a robust, efficient, 1.5 GHz cavity design.
- We would like to publish the call for tender for the prototype at the end of the year.

ESLS-Meeting

THANKS FOR YOUR ATTENTION

ESLS-Meeting

24