

KARA and FLUTE RF Overview/status

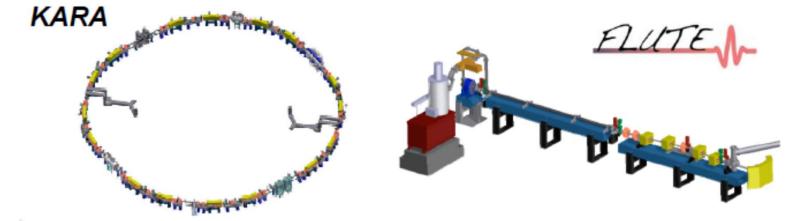
Nigel Smale on behalf of IBPT and LAS teams

Laboratory for Applications of Synchrotron radiation (LAS) Institute for Beam Physics and Technology (IBPT)

Outline

KIT accelerators KARA and FLUTE

KArlsruhe Research Accelerator (KARA)

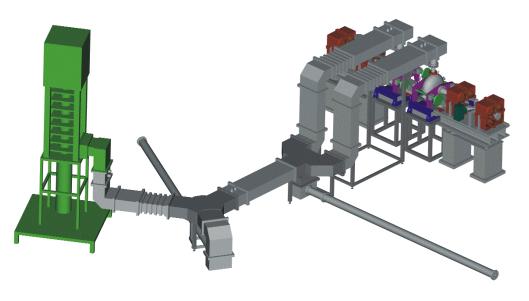

- RF system
- LLRF

Far-infrared Linac and Test Experiment (FLUTE)

- What is FLUTE
- FLUTE layout
- RF
- LLRF
- Summary
- Questions to me

Accelerators @ KIT

- Circumference: 110.4 m
- Energy range: 0.5 2.5 GeV
- RF frequency: 500 MHz
- Revolution frequency: 2.715 MHz
- Beam current: up to 200 mA
- RMS bunch length: 45 ps few ps


- Length: < 20 m</p>
- Energy: ~ 41 MeV
- RF frquency: 3 GHz
- Pulse repetition rate: 10 Hz
- Electron bunch charge: 0.001 3 nC
- RMS bunch length: 1 300 fs

One of two KARA RF stations

KARA

Design Parameters	Value
Beam Energy	2.5 GeV
Energy Loss per Turn	662 keV (64 kW)
Design Beam Current	400 mA
Harmonic Number	184
RF Frequency	499.65 MHz
Momentum Compaction Factor	0.0081
Energy Spread	0.09 %
Total RF voltage	2 MV
Energy Acceptance	1.5 %
Synchrotron Frequency	36 kHz
Synchronous Phase	160.7 °
Bunch Length	9.8 mm
Number of Cavities	4

Schematic taken from 'Proceedings of the 1999 Particle Accelerator Conference, New York, 1999'

KARA Low Level RF

The original Low Level Electronics was completely analog and was purchased from ELETTRA ~1999. Essential components are the phase, amplitude and frequency loop. Their specifications are:

	Stability	Range	Bandwidth
Phase loop	< 0.5°	20°	1.4 kHz
Amplitude	<1%	30 dB	10 – 1000 Hz
Freq Loop	< 0.5%	40 dB	30 kHz

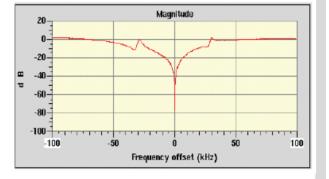
This was replaced

Pre-purchase tests 2014,

see 'Vitali Judin, ANKA RF System-Upgrades Strategies, 18th ESLS-RF workshop 2014, DELTA, TU Dortmund, Germany'

Dimtel LLRF for Storage ring went in 30.09.2015

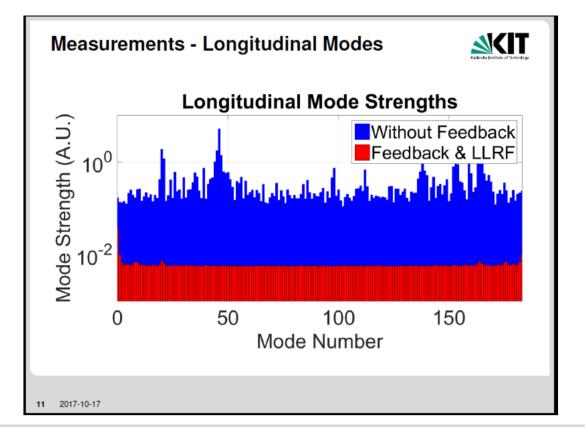
Dimtel LLRF for booster went in, 01.01.2016


Table 1: Signal numerology and frequencies

KARA

Signal	Symbol	Ratio to $f_{\rm rf}$	Frequency (MHz)
Reference	$f_{ m rf}$	1	499.654
IF	$f_{ m IF}$	$\frac{1}{12}$	41.6378
Local oscillator	$f_{\rm LO}$	$\frac{11}{12}$	458.0162
ADC clock	$f_{\rm ADC}$	$\frac{11}{48}$	114.5040
DAC clock	$f_{\rm DAC}$	$\frac{11}{24}$	229.0081

closed-loop disturbance rejection


- 🟓 beam response at 30 kHz
- ➡ -70 dB rejection at ~30 Hz
- → -15 dB rejection at 10 kHz

KARA

The implementation of the DIMTEL LLRF together with BBB (Bunch By Bunch) has given huge improvements in stability, diagnostics and user control for research applications, for example see "Integrated operation of LLRF and bunch-by-bunch feedback systems at KARA, software and RF Control- LLRF Workshop 2017, Barcelona, Edmund Blomley".

FLUTE

FLUTE

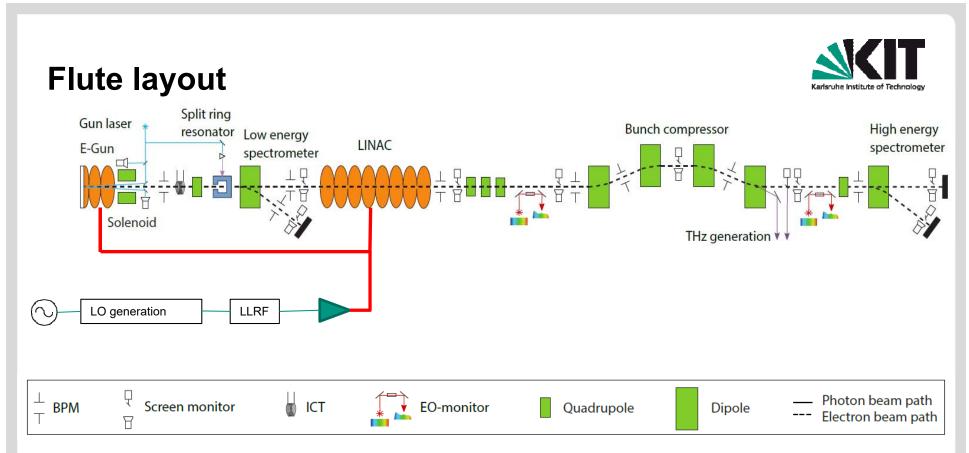
Inauguration July 2017

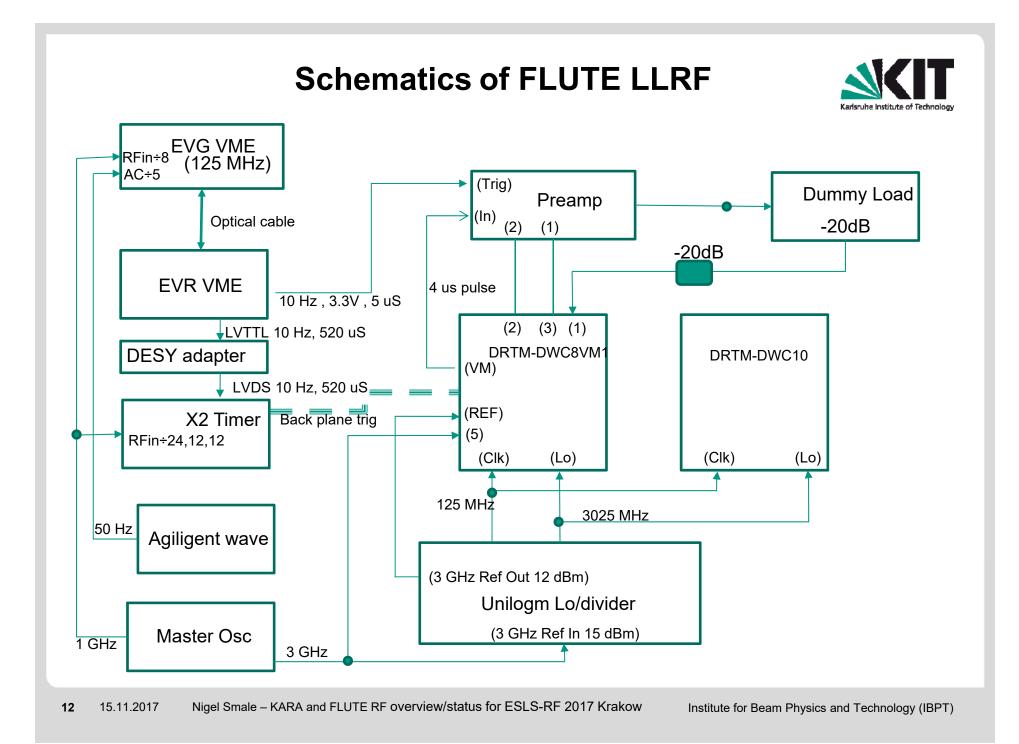
(I. to r.) Dr. H.-H. Braun, PSI, Prof. Dr. H. Dosch, Chairman of DESY Board of Directors, Prof. Dr. A.-S. Müller, Director IBPT, Prof. Dr.-Ing. H. Hanselka, President of KIT, and Prof. Dr. O. Kraft, Vice President Research of KIT (Photo: M. Breig, KIT)

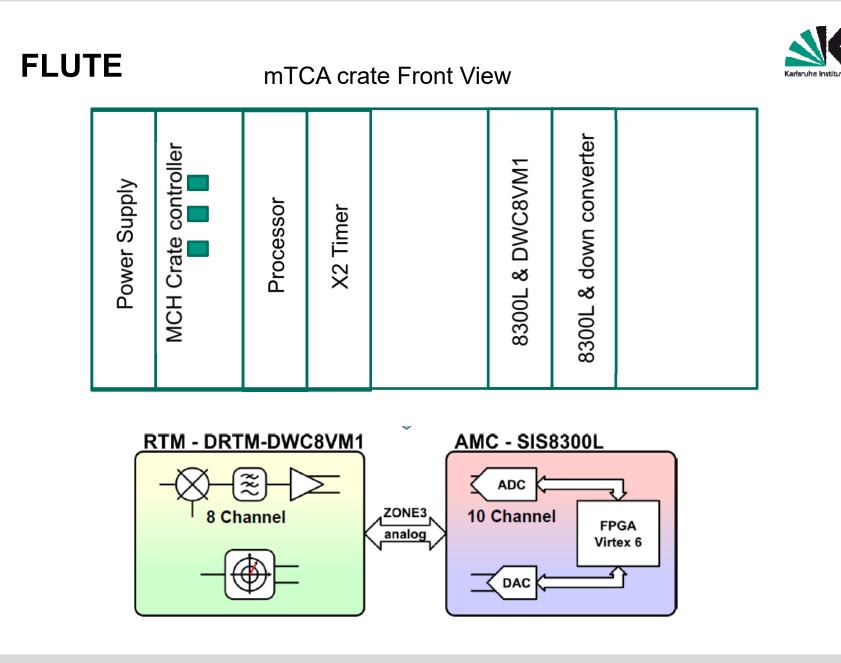
In materials research, chemistry, biology and medicine, chemical bonds, and especially their dynamics, determine the properties of materials. The bonds can be precisely investigated with terahertz radiation and short pulses. The FLUTE accelerator at the KIT will develop novel accelerator technologies for compact and powerful terahertz sources as efficient tools for research and application. On Thursday 13th July, FLUTE was officially inaugurated during a ceremony at the Institute for Beam Physics and Technology (IBPT)

FLUTE Goals for FLUTE

- Study for a future compact, broadband accelerator based THz source
- Test bench for new beam diagnostics & instrumentation
- Compare in simulation and experiment:
 - Coherent Synchrotron Radiation (CSR)
 - Coherent *Transition* Radiation (CTR)
 - Coherent Edge Radiation (CER)

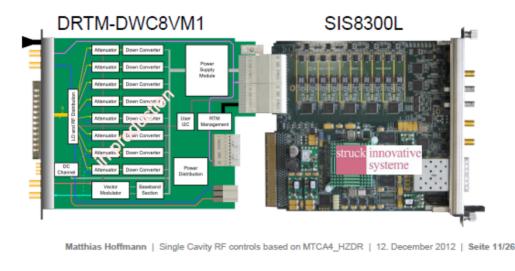

- Systematic **bunch compression** studies:
 - Different compression schemes
 - 0.1–3 nC \rightarrow Study space charge and CSR induced effects and instabilities
- Experiments with THz & X-rays, e.g.: Pump-probe, 2D spectroscopy, new materials,...
- Test facility for accelerator studies within the Helmholtz "ARD" initiative





What needs to be synchronized, coincident, phase stable; relative to each other:

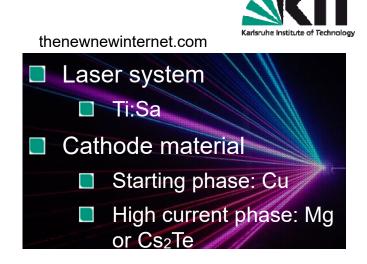
Master equilator o a 2 CHz	Parameter	Value	Unit
Master oscillator e.g 3 GHz	Final electron energy	~ 41	MeV
LLRF for power to the cavities	Electron bunch charge	1 - 3000	pC
Gun laser for firing E-Gun cathode and split ring resonator THz generatio	Electron bunch length	1 - 300	fs
ADC triggers	Spectral bandwidth	~0.1 - 100	THz
EO-monitor (Electrical optical sampling) for diagnostics	THz pulse power	up to ~ 5	GW
50Hz mains to reduce noise	THz pulse energy	up to ~ 3	mJ MV/am
	THz E-field strength Pulse repetition rate	up to ~ 12 10	MV/cm Hz
10 Hz trigger	Fuise repetition rate	10	TIZ


FLUTE MTCA Down converter and digitizer

Single Cavity LLRF Hardware.

> DRTM-DWC8VM1 – 8 channel down- / 1 channel upconverter

- 700MHz to 4GHz (upgrade: 500MHz to 6GHz)
- Excelent amplitude (<0.005%) and phase resolution (<10fs)
- > SIS8300L 10 channel 125MHz/16Bit digitizer
 - Xilinx Virtex 6
 - Low jitter clock distribution

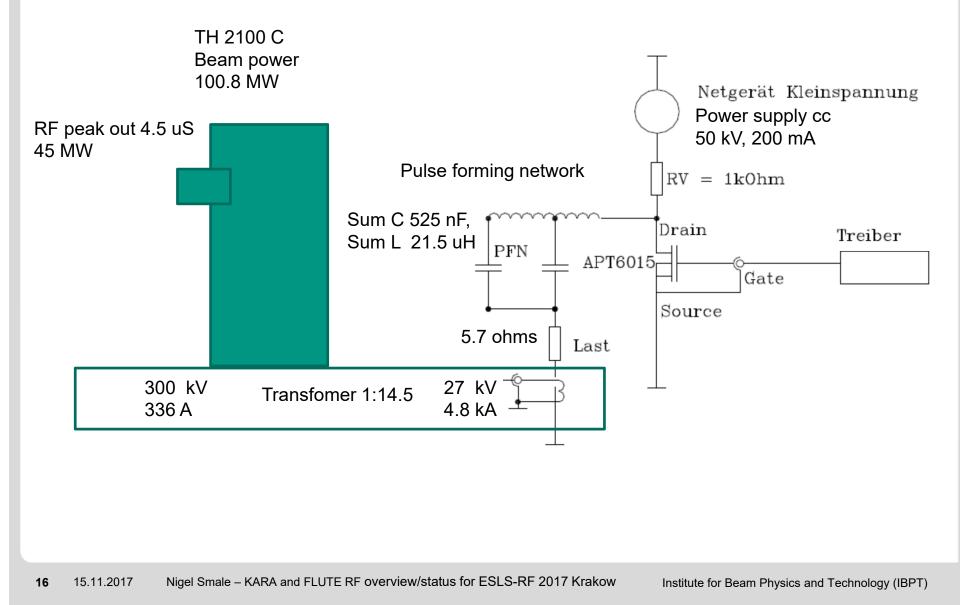


FLUTE Laser photo-injector gun

CERN CTF (CLIC Test Facility) gun

Designed for high current

Property	Value	
Frequency	2.998 GHz	(CERN)
Cells	2.5	
Acc. gradient	~100 MV/m	17
Peak power	~20 MW	
Output energy	7 MeV	
Bunch charge	≤3 nC	1 11



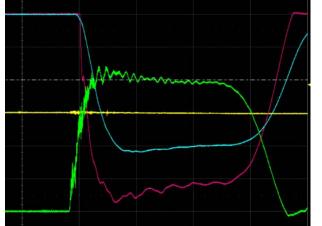
Q value ~ 16150 ohms Shunt R 14.13 M Ω /m (50 mm) Phase Stability requirement > 0.1° Amplitude stability requirement > 0.1%

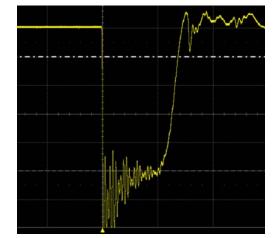
Property	Value
Repetition rate	10 Hz
Pulse length	1–4 ps
Wavelength	266 nm
Pulse energy on cathode	0.3 mJ

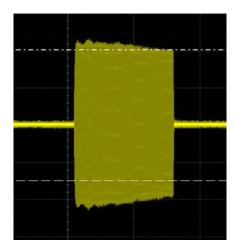
Flute Pulse forming network, transformer and Klystron

FLUTE RF

Power supply 50 kV, 200 mA




Pulse forming network 525 nF, 21.5 mH



Transformer tank 1:14.5 and 45 MW klystron

Pulse envelope is 4.5 us (NO LLRF feedback loop)

Summary

- Digitizing the LLRF for KARA was very successful in terms of both commissioning and improved performance. The LLRF combined with the new BBB brought further stability and many interesting applications. Thanks to DIMTEL for the great support.
- FLUTE is approaching the stage of first beam. Laser is operational, RF power to the gun available, and diagnostics are installed for first beam observations. Many thanks go to MAX lab for lending us some S-band waveguides to make the gun commisioning far less complicated.

For both KARA and FLUTE we have some very interesting work to do, and are looking for interesting people to do it. Scientists, Engineers and Technicians are all welcome to contact us.

Thank you all very much for your attention,

Any questions ?