

Lukas Stingelin :: RF-Systems 1 :: Paul Scherrer Institute

Operation and Upgrade of the SLS RF Systems and SwissFEL

24th European Synchrotron Light Source RF (ESLS-RF) workshop organized by KIT November 2020

SLS-Operation Statistics until 2019

2019: Best beam availability since SLS-history!

Outages more than 5h:

- PS of personnel safety system
- Arcing at Klystron modulation anode cable

Major RF-issues in 2019:

- LINAC Klystron-Tank: arcing HV transformer.
- Bad contact in 50Ω Match at Klystron dir.-coupler caused refl. power interlocks
- Arcing at Klystron Modulation Anode cable.
- Phase-Jumps caused by phase controller.

Arcing at LINAC Tank HV transformer

Arcing visible between the filament windings of the HV-Transformer

\rightarrow Installed isolation plate:

LINAC: Broken S-band windows at 50MeV structure

After 20 years of operation: 2 Failures within a few weeks

- 1) replaced only the ceramic disk of the window
- 2) Replaced full window assembly and reduced pulse width to $1\mu s$

Water Leaks in the SR ELETTRA cavities

3 water leaks in the cavity wall-cooling circuit in 2020

(old cavities had problems with the flange cooling circuit, improved in the new cavities)

Picture of the copper-tube of an old cavity (operation 2000-2014) \rightarrow Flow Accelerated Corrosion Picture from S. Ritter, water chemistry investigation by SvoBaTech

Water Leaks at 500MHz Thales Klystrons

Leak was repaired by flame-brazing, unfortunately, several other leaks were found and had to be brazed are determined by flame-brazing and brazed are braz

Broken Coaxial Line at the Booster

Burned coaxial line connecting solidstate amplifier to Booster cavity and teststand.

- \rightarrow Switched to Klystron operation
- → Replaced the inner ellbows, soldered their joints
- → Added temperature sensors to the coaxial line and output air

Problems with «Pantak» Connector of 500MHz Klystrons

\rightarrow Filament overvoltage interlocks:

No contact at the «shield» \rightarrow Added copper disks

Bad contact at the tip \rightarrow re-soldered

Done:

- ✓ LINAC 3GHz LLRF-upgrade → «SwissFEL»
- ✓ EEV-Klystron from Daresbury refurbished
- ✓ Storage-Ring: 2 HOMFS upgraded
- New water chemistry for the cavity cooling racks

In Progress:

Improvements on «Pantak» connectors?
Installation of filters to the cavity cooling rack
LINAC pulser board upgrade to shorter bunches
Storage-Ring+Booster cavities: HOMFS upgrade
Storage-Ring: LLRF upgrade

 \square SLS2 RF Upgrade, TDR \rightarrow See next slides

Progress on the SLS Upgrade: Project SLS 2.0

	Lattice B062	SLS
E [GeV]	2.7	2.4
Lattice: U ₀ [MeV] (energy loss/turn)	0.690	0.532
δE/E (natural energy spread)	1.145 10 ⁻³	8.585 10 ⁻⁴
α _c (momentum compaction)	1.041 10-4	6.049 10 ⁻⁴
τ _ι [ms] (long. damping time)	6.380	4.340
τ _x / τ _y [ms] (transv. damping times)	4.128 / 7.519	8.651 / 8.670
v_x / v_y (betatron tunes)	39.35 / 15.25	20.43 / 8.73
Chromaticity x / y	< 2 / < 2	5 / 5
Beta function at Cavity x / y	9.0 / 6.6	1.5 / 1.1

New: Higher energy \rightarrow 4 RF stations

Lower $E \cdot f_s / \alpha_c / \tau_l$

 \rightarrow lower LCBMIthreshold

New cavity position in long straight and lower chromas: → lower TCBMIthreshold

PAUL SCHERRER INSTITUT RF parameters (Example with parameters for ELETTRA cavity)

	SLS 2 @ 2.7GeV Lattice 062 (case for 400mA)	
SR-Losses in lattice	276kW	
Minimum power for IDs	44kW	
Average power for IDs	68kW	
Maximum power for IDs	85kW	
Total voltage in main RF cavities	1.78MV (445kV/cavity)	3 Cavity operation:
Wall-loss per cavity (ELETTRA)	~29.1kW	52kW
→RF-power range per station	109.1kW 119.4kW (Amp. Spec.: 150kW)	<mark>172kW</mark> (150kW → Ib<320mA)
→Coupling factor	3.7 4.1	3.3 (or refl. power)
\rightarrow Detuning for matching	-32.9kHz34.1kHz	
Ideal voltage for Super-3HC	500kV 522kV	

RUNE LTB

Location of the 4 Main Cavities: In long straight 05: Here the case with old ELETTRA cavities upgraded with axial and radial dampers

Top view

XOSLA SX-APPES XOSLA

Needs additional synchrotron radiation absorber in the middle of the cavities. Reserved space for main cavities: 4.5m Θ

Old Cavity Option 1: «ELETTRA axial damper only»

(Upgrade of the existing Elettra cavities with axial absorbers)

Only axial dampers (see CDR)

- Advanced design
- Good damping for all modes modes ≥ L9
- Extra length seems not to create problems
- Partial reduction of the Q for few modes below L9, this could create problems to find a stable region.

Old Cavity Option 2: «ELETTRA damped» (Axial and radial absorbers in ELETTRA cavities)

Axial and radial dampers:

- Advanced design
- Enough damping for all longitudinal HOM modes, no need anymore of fine tuning to avoid instable regions
- Plunger for HOM-detuning not available anymore
- Vacuum pumping probably ok but not ideal
- Very poor results for the transverse modes + issues with water-leaks!

Design of new cavities, the «PSI-Cavity»

Design of a new cavity:

- Freedom in the design and positioning of the damping waveguides to reach the required damping for longitudinal and transverse modes
- \checkmark The design can be done for proper installation in SLS2 tunnel
- \checkmark Design that allows the complete production at PSI using the existing facilities of the workshop
- $\checkmark~$ A new design could solve the problems with the RF power couplers
- \checkmark A new design could solve the water leaks problems of ELETTRA cavities
- ✓ Preliminary conceptual design

New cavity main features:

- Direct waveguide to cavity adjustable coupling
- Ceramic window in waveguide
- Damping of longitudinal and transverse HOMs
- Removable silicone carbide loads, no brazing, no ferrite absorbers
- Small vacuum impedance, direct large vacuum port in the cavity

New PSI long. HOM impedence

Other cavity option are envisgeable: example with the EU damped cavity

- The RI Dampy cavity fits to the long straight 05, if it is rotated by 30°.
- No cooling rack required: The water cooling can be connected directly to the cooling of the storage ring (no hole in tunnel required).
- Installation, supports etc. to be checked in detail.

Transverse CBI growth rates & thresholds

- Assuming beta constant everywhere:
- Growth rate, smeared out, full fill

$$\tau^{-1} = \frac{I_{tot}c}{4\pi QE_0/e} Re\{Z_T(n \,\omega_{rev} + \omega_\beta)\}$$

localized impedance

$$\tau^{-1} = \frac{I_{tot} c \beta_{cav}}{\frac{2E_0}{e} C} Re\{Z_T(n \,\omega_{rev} + \omega_\beta)\}$$

 $\Rightarrow \text{In SLS 2: } \beta_{x,y} = 9.0/6.6 \text{ m} \Rightarrow \tau_{x,y} = 4.1/7.5 \text{ ms,} \\ \Rightarrow \text{In SLS 1: } \beta_{x,y} = 1.5/1.1 \text{ m} \Rightarrow \tau_{x,y} = 8.6 \text{ ms}$

- Effective damping due to three components
 - Natural damping rate $\alpha_n = 1/T_{x,y}$
 - Damping due to the tune spread caused by chromaticity and energy spread
 - Optionally the bunch by bunch feedback

Two counter effects: Lower betas in SLS 1 increasing threshold, but smaller effect of chromaticity

Transverse thresholds for SLS 2.0

- Total damping rate: $\alpha_{total} = \alpha_{natural} + \alpha_{chroma} \{ \dots + \alpha_{MBF} \}$
- Derive chromatic damping from multi particle simulations
- Optionally add effect of MBF: $\alpha_{MBF} = 1/200$ turns = 5000 sec⁻¹
- Compute thresholds (both with/without MBF) from analytical formula

• The hard limit of chromaticity given by acceptance is at 2, we assume a value of 1.5

- Without MBF, thresholds are $Z_x = 3.3 \text{ M}\Omega/\text{m}$, $Z_y = 4.4 \text{ M}\Omega/\text{m}$ per cavity
- With MBF, thresholds are $Z_x = 5.1 \text{ M}\Omega/\text{m}$, $Z_y = 6.9 \text{ M}\Omega/\text{m}$ per cavity

- We tested the semianalytical model against a multi bunch/multi particle model in Elegant using the lattice and impedances of SLS 2.0
- Result: Semianalytical model predicts a safe (=pessimistic) threshold

(court. of A. Citterio)

LCBI: Syncrotron frequency and Landau damping

Third harmonic cavity has two counteracting effects w.r.t. longitudinal CBI thresholds

- Synchronous frequency decreases, lowering thresholds
- As potential well flattens, Landau damping kicks in increasing thresholds
- Impedance threshold per cavity:

PAUL SCHERRER INSTITUT

 Minimum threshold is not a nominal current but during filling at ca 350 mA: 6.2 kΩ GHz (SLS exhibits a similar effect with the most unstable point/lowest threshold at roughly 200 mA)

Injector: 7 RF stations routinely in operation

1x S-band RF gun, 4x S-Band TW structures, 1x X-band structures and 1x TDS Linac 1, 2 and 3: 26x C-band RF stations routinely in operation (with a TDS systems shared in S30CB13/14)

- ✓ ARAMIS mainly in user operation, ATHOS is under beam and photon commissioning
- ✓ All RF stations ran at 100 Hz in 2019 (the low energy TDS system runs at 1 Hz)
- ✓ Linac 1 and Linac 3 can provide 1 spare RF station in hot-standby
- ✓ A beam energy of 6.3 GeV was achieved with compressed beam (300 MeV at the injector)
- ✓ New LLRF high level application installed

(court. of P. Craievich) Page 23

(court. of P. Craievich)

SwissFEL: High Power RF Systems – Injector

	Injector station	Structures	Energy Gain [MeV]	RF Power (maximum) [MW]	Klystron Voltage [kV]	issues/limitation
S-band stations	SINEG01	2.6 Cell SW	7.1	15	230kV	Low perveance (SLS)
	SINSB01	1x4m TW	70.5	36 (45)	267kV	Klystron arcing
	SINSB02	1x4m TW	62.4	26 (45)	260kV	Klystron arcing
	SINSB03	2x4m TW	96.4	35 (45)	239kV	Klystron arcing, water leak at collector
	SINSB04	2x4m TW	96.4	35 (45)	283kV	Klystron arcing, water leak at collector
X-band station: S-band station:	SINXB01	2x0.8m	-19	7	320kV	Solenoid water leaks
	SINDI01	5 Cell SW	TDS	5	137kV	Operation 1 Hz

Comments on the High Voltage stability:

- stability of all S-Band stations are between 10 and 15ppm at our operating voltage (measurements done in Nov. shutdown);
 - SINXB01 seems to be at best 21ppm, this needs additional power supplies or replacement with new X-band modulator under development for ATHOS;

Short term: <5 years

TH2100 Klystrons (or compatible)

2 x TH2100 Klystron repairs per year. Goal up to 45 MW 1 μ s RF Stable operation. First is installed and performs well!

Medium term: 5 to 10 years

Progressively replacing Modulators (Priority X-Band)

Up to 45MW SINSB01 to SINSB04 as required

Long term: >10 years

Replacing of Injector Modulators Completed

Gradual replacement of all S-Band Klystrons for >45MW

SINSB05 (Spare Station)/pulse compressor

SwissFEL: High Power RF Systems – C-Band Linacs

Klystron Issues

S10CB01 12300 4.1 us 320 kV 34.4 MW Multipacting S10CB07 13800 4.0 us 335 kV 38.1 MW Detuned	ons
S10CB07 13800 4.0 us 335 kV 38.1 MW Detuned	
S30CB01 10300 4.5 us 303 kV 37.7 MW Between Multipact Regions	ting
S30CB04 9180 5.0 us 333 kV 43.1 MW Excessive Arcing, Sw Unit jitter	witch
S30CB14 13800 4.7 us 240 kV 6.5 MW Issues at low power	ver

Common Issues

- Klystron Arcs occurs at High voltage (>300kV ~40MW setpoint)
- Multipacting occurs <40MW setpoint
- Large spread in Klystron Perveance, 1.44 to 1.6 (additionally large variation in heater power, 200 to 500 Watts)
- Detuning of Klystron (x3), all shifted 7, 10 & 14 MHz higher

- Module installed in tunnel
- April 2021: available for acceleration
 - Goal: Athos Users experiment start in September 2021

- Installation in Progress
- Tests of RF components ongoing
- PolariX-TDS already in operation at FlashForward (DESY)

(Ref: NIMA 979 (2020) 164473)

High Gradient S-Band Accelerating Structure (Collaboration with FERMI: manufactured and measured at PSI)

Wir schaffen Wissen – heute für morgen

