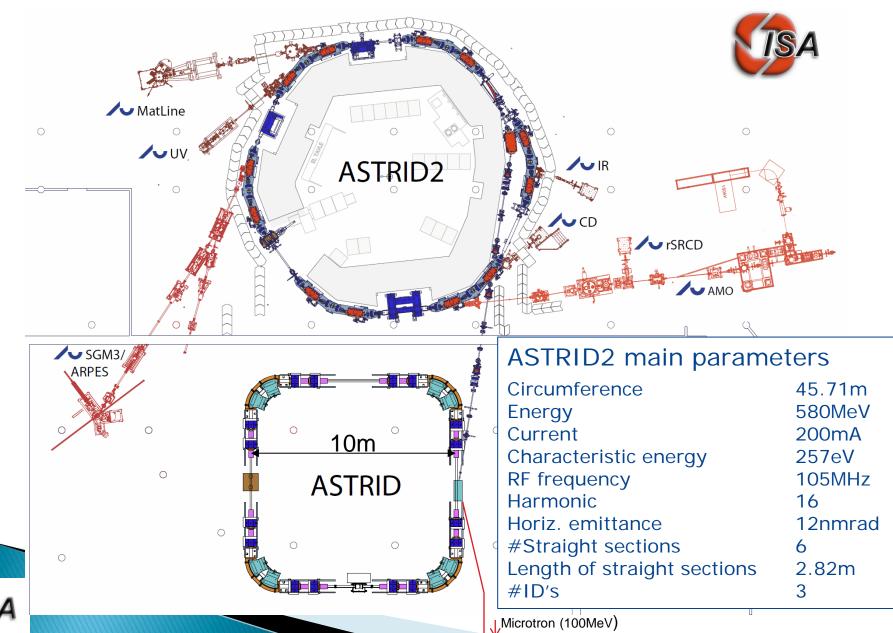
Status of the ASTRID2 RF systems

Jørgen S. Nielsen Center for Storage Ring Facilities (ISA) Aarhus University Denmark

ESLS-RF 22 (8/11 2018), ASTRID2 RF system 1

ASTRID2


- ASTRID2 is the new synchrotron light source in Aarhus, Denmark, since 2013
- ASTRID2 main parameters
 - Electron energy:
 - Emittance: 12 nm
 - Beam Current: 200 mA
 - Circumference:
 - 6–fold symmetry
 - lattice: DBA with 12 combined function dipole magnets

45.7 m

580 MeV

- Integrated quadrupole gradient
- 4 straight sections for insertion devices
- Using ASTRID as booster (full energy injection)
 - Allows top-up operation

The ASTRID 2 facility

ASTRID2 RF

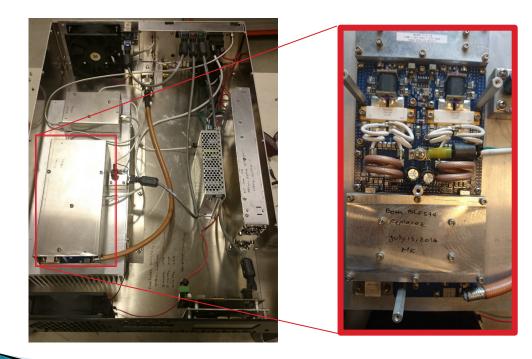
- 105 MHz (like ASTRID)
- Main RF parameters
 - Harmonic:
 - RF voltage:
 - Synchrotron frequency:
 - Synchrotron radiation power:
 - Cavity power:
- 8 kW solid state amplifier from Tomco Technologies (Australia)

16 50–150 kV 10–20 kHz

~1.4 kW 0.5-7 kW

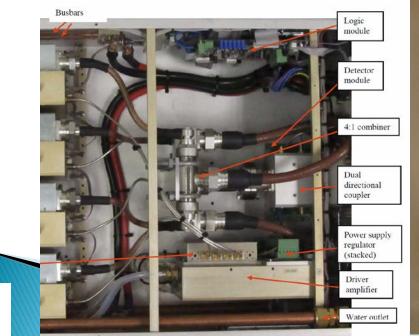
Problems, problems, ...

- ASTRID: Raditek 1 kW solid-state amp:
 - Twice burned the transistors (unknown reason)
 - Commercial FM broadcast amplifier from Raditek Inc.
- ASTRID2: Tomco 8 kW solid-state amp:
 - Burned two 1 kW sub amplifier modules
 - 1: Burned one amplifier submodule
 - 2: Burned one circulator



ASTRID Problems

- ASTRID: Raditek 1 kW solid-state amp:
 - Twice burned the transistors (unknown reason)
 - Commercial FM broadcast amplifier from Raditek Inc.
 - Power module: Commercial 1 kW FM broadcast module (BLF574)


Backup: Homemade 600 W amplifier based on commercial FM broadcast amplifier module

ASTRID2: Tomco 8 kW SSA

Consist of eight 1 kW amplifier modules

- Combined 2 and 2 and then to 4 kW
- The two 4 kW boxes are then combined to the full 8 kW
 - Simple in-phase radial type
- Specified to withstand full reflection at any angle
 - Individual 1 kW circulators on each of the
 - 1 kW amplifier modules

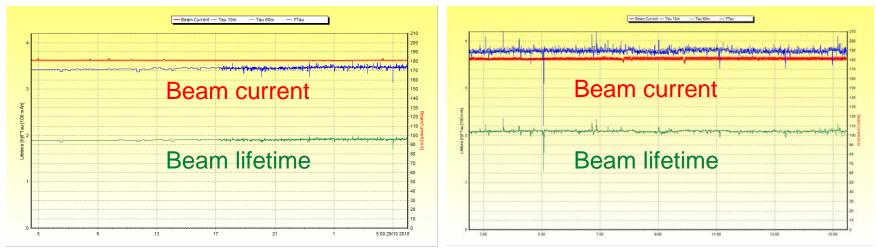
Tomco 8 kW SSA failures

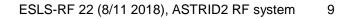
Amplifier submodule:

- Exploded when turning on the amplifier at relative high power, probably with cavity not correctly tuned
- Tomco repaired the module free of charge (courtesy)

Circulator:

- Failed during deliberate test with high reflected power (detuned cavity)
 - Using one box: 4 kW forward power, ~2.5 kW reflected power





Consequences

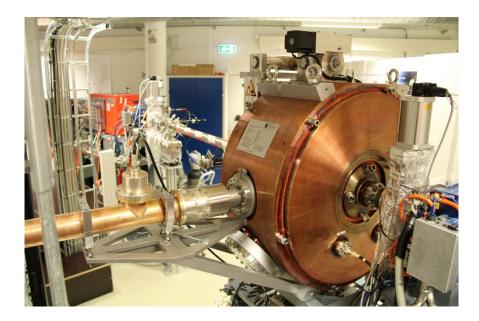
- For four months we had to use only one PA box (4 kW)
 - Reduced cavity voltage => reduced beam lifetime (only 1.9 h and not 2.1 h)

Blue curve: Beam lifetime * Beam current [Ah]

Long term solution

- Ordered a 8 kW circulator
 - Only allow 2 kW reflected power in steady state
 - To be installed in December
- More monitoring and interlock of reflected power
- Should allow us to run higher cavity amplitudes hopefully giving higher beam lifetime
- Question:
 - Can a power combiner split reflected power unequally?
 - Both failures were with no beam

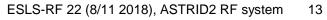
Thank you for your attention


Thank you for your attention

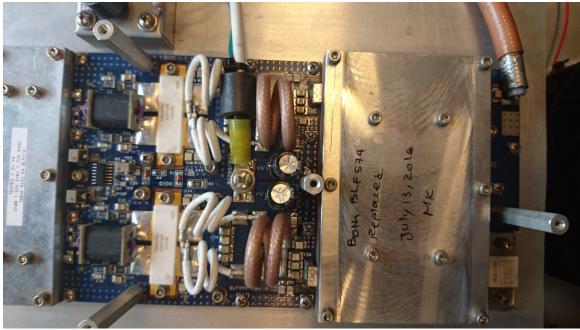
ESLS-RF 22 (8/11 2018), ASTRID2 RF system 11

ASTRID2 Cavity

- Basically the same as MAX IV cavities
 - Built by RI (RF design by MaxLab)
- Has been conditioned to ~150 kV (~4.5 kW)
 - No problems seen, but there is outgassing
- Usual operate at 120 kV (~3 kW)
- Have a 315 MHz Landau cavity (also from RI and based on MaxLab design).
 - Installed March 2015

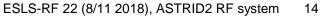

New ASTRID RF power amp.

- ▶ 1 kW Solid State from Raditek Inc.
 - Replaces the ~25 year old 8 kW tetrode amplifier
- Saves electrical power
 - Idle power consumption:
 - Tetrode: ~7 kW
 - Raditek: ~150 W


Old amplifier

New ASTRID RF power amp.

I kW power module:



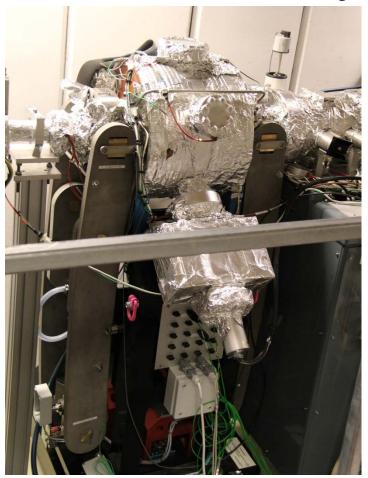
Commercial FM module

Amplifier

Circulator

ASTRID2 Layout

ASTRIDx LLRF


- Since January 2011: New LLRF in operation at ASTRID
 - Same system for ASTRID and ASTRID2 (except for different tuning control)
- Digital control of baseband signals
 - A computer (PC) running LabVIEW Real-Time with FPGA equipped multifunction card to measure and control the baseband signals
 - NI PCIe-7852R:
 - Virtex 5 FPGA, 8 AI, 750 kS/s/ch, 8 AO, 1 MS/s/ch, 16 bit
 - Detection: IQ demodulators with low pass filter
 - $\pm 180^{\circ}$ phase detection
 - Control: Amplitude and Phase (voltage controlled)
- FPGA (Amplitude Loop): No problems at all
- Real-time (Tuning Loop and Phase Loop): A few restarts have been necessary (data acquisition loop stops)
- Very happy with the systems

Landau cavity

- Installed March 2015
- Prebaked (130°C)
- Preconditioned with 100 W (~20 kV)
 - Multipactoring around 10 W (200 V)

Installed in the ring

Landau cavity

Better lifetime

- Before: 1.4 h @ 80 mA and 1.0 h @ 120 mA
- Now: 2.0 h @ 80 mA and 1.85 h @ 120 mA

More stable beam

- Moved instabilities to frequencies in the (many) MHz range
- SR diagnostic camera (in control room) now shows a stable beam (and happy users)
- Good tuning range is limited
 - $^\circ\,$ Pt. use a detuning of +400 kHz (tuning range is ±500 kHz).
 - "Theoretical optimum" (flat potential) is +160 kHz
 - Drop in cavity voltage and outgassing 250-300 kHz

Needs more conditioning?

Problems, problems, ...

- ASTRID: Raditek 1 kW solid-state amp:
 - Twice burned the transistors (unknown reason)
 - Commercial FM broadcast amplifier from Raditek Inc.
- ASTRID2: Tomco 8 kW solid-state amp:
 - Burned two 1 kW sub amplifier modules
 - 1: Burned one amplifier
 - 2: Burned one circulator

