

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

M. Gaspar

Solid-state power amplifier developments in PSI

marcos.gaspar@psi.ch

ESLS-RF 2016

Solid-State Amplifier Technology Overview

Solid-State Amplifier Technology: Advantages:

- Modern technology in evolution.
- No high voltage
- No radiation issues
- Price already low and going down.
- Good optimization possibilities
- Redundancy.
- ◆ Compact.
- ◆ Simple cooling.
- Distributed circulator and load.
- Low phase noise.
- ◆ No vacuum.

Disadvantages:

- Not enough experience acquired.
- Not well known technology.
- Not enough reliability data.

Solid-State Amplifier: Simplyfied Block Diagram

PAUL SCHERRER INSTITUT

The PSI Solid-State Amplifier System Overview

3D-View of 65kW 500MHz Amplifier System

ESLS-RF 2016

Main Components

RF Power Amplifier

Power Splitters

Power Directional Couplers

Power Combiners

** All components designed by the author in PSI

Solid-State Amplifier Module Overview

- 120 assembled in neighboring company.
- Design made in PSI using BLF578 transistor.
- Simulations made using transistor model created in PSI.
- All tests and alignements made in PSI.
- Circulator is included (IL~4%).
- Maximum output power > 820W (most of the amplifiers)
- Drain efficiency: 62% (average)
- Phase spread among RF amplifiers ~ 1 degree (sigma)
- Return loss < -25dB

Typical Performance Parameters (Module 069)

Vdd [V]	Pout [W]	Pin [W]	Gain [dB]	Pdc [W]	Efficiency [%]	Phase(S21) [°]	Mag(S11) [dB]
44.06	630	14.6	16.3	1006.3	62.6	-172.4	-29.55
45.99	630	11.7	17.3	1022.9	61.6	-169.9	-29.74
47.80	669	11.7	17.6	1100.0	60.8	-168.1	-29.64
45.47	674	15.1	16.4	1075.3	62.7	-171.1	-29.41
48.00	674.9	11.7	17.6	1104.4	61.1	-167.8	-29.62
50.03	890	22.4	16.0	1468.9	60.6	-169.4	-29.35

800 Vdd=20.0V Vdd=30.0V 700 Vdd=40.0V Vdd=50.0V

600

500 400

30

200

1.01

Step6: Module:069 Pout[W] × Pin[W]

PAUL SCHERRER INSTITUT.

Performance parameters of all produced RF amplifier modules

Vdd=48V

Pin=11.7W

Paul Scherrer Institut • 5232 Villigen PSI

ESLS-RF 2016

High Power Combiner

**Value limited by the measurement set-up.

Input Power Splitter Components

9-Way Splitter

Produced Devices

6-Way Splitter

Performance Parameters of Splitter Components

Splitter Component	RL [dB]	IL [dB]	BW (RL<-25dB) [%]
9-Way Splitter	-42.6	-0.063	5.28
6-Way Splitter	-22.7	-0.01	6.34
2-Way Splitter	-35.8	-0.051	19.2

ESLS-RF 2016

Power Supply Controller

(and Complete Monitoring System)

Main Features

Output Power: 1.2kW

Output Voltage Range: 23V to 53V

Input Voltage Range: 85Vac to 265Vac

Power Factor Compensation: PF > .98

Efficiency: ~ 90%

Can be Remotely Programmed and Monitored

Extra Analog and Digital I/Os

Multi-tasking Script Operating System (SOS)

Interlock Reaction Time: ~ 1uS

Full Monitoring Loop Time: ~ 150mS

ESLS-RF 2016

Supervision System Configuration

RF Power Amplifier 110x

PAUL SCHERRER INSTITUT

SOSDAQ - Supervision System User Interface

System Console

SOSDAQ system performance parameters

Parameter	Value
Channel update rate	≈ 200 channels/s
Number of channels	≈ 2000 channels
Number of operating levels	5
Average time to change level	5s
Fast interlock reaction time	10ns
Slow interlock reaction time	5s
Server request rate (minimum)	>100 requests/s

R				3011133 147						2 - 15		31 IF			
			Level <mark>4:System_Off</mark>	Target 0 New Tar	get Sct S	Status <mark>Stoppe</mark>	d Start	Stop Stop	Interi	ock 0 R	eset]	5102			
	2015-04-10_17:43:11	2001	daq_run	daq_level	daq_level_target	daq_ilock	daq_error	daq_device_error		1					
	2015-12-15_11:34:38	0	0	4	0	4	0	0							
2	015-04-10_17:58:22	2013	PMtotal	PFtotal	VII	VI2	VB	VID	н	12	13	10	PF1	PF2 PF	-3
20	15-12-15_11:34:41	5001	1.65	1.00	234.65	234.72	235.18	0.56	0.02	0.02	0.02	0.02	0.70	0.26 0.	97
2	015-05-20_11:19:45	2004	Q1BreakerNotClosed	ThermoRelayFault	EmergButtonPressed	KM1Closed	KM2Closed	DI5	D16	PSYS					
2	015-10-19_16:27:58	3001	1	0	0	0	0	0	0	1					
2	015-05-20_11:38:03	2012	InletTemp1	InletTemp2	OutletTemp1	OutletTemp2	WaterFlow1	WaterFlow2	SSlock1	SSIOCK2					
20	015-12-15_11:12:47	3002	1	0	0	0	0	0	1	0					
2	015-05-20_11:34:58	2005	StepStartOnOff	DIO1	DI02	DI03	DIO4	DI05	DIO6	WatchDog					
2	015-12-15_11:34:39	3003	0	0	0	0	0	0	0	0					
201	5-05-20_11:30:59	2008	WaterFlow												
2	015-05-28_10:56:09	3004	0.003												
	2015-05-28_10:56:10	3005	0.003												
	2015-05-20_11:32:49	2007	E-Off	PsysOut1											
	2015-12-15_11:34:40	3006	0	0											
1	2015-04-10_18:25:42	2008	Timer0												
	2015-12-15_11:34:42	6 0 01	1												
14	2015-04-10_18:25:42	2014	Poutdbm	Vth	Ucompout	Cmpouten	RST								
20	15-12-15_11:34:06	4002	4.23	3.00	0	1	1.00								
2	015-12-15_11:40:22	4003	3.20	3.00	0	1	1.00								
	2015-12-15_11:33:22	4004	0.01	3.00	0	1	1.00								
2	015-12-15_11:34:06	4005	0.346	1.5	0	1	1.00								
20	015-04-10_18:25:42	2010	RFSwitch	RFSwitchStatus											
	2015-12-15_11:34:07	7001	0	1											
2	015-04-10_17:42:32	2002	ldd1	kld2	Vdd	Vddset	Vbias	Pwron	Pdc	Pin	Pout	TempR5	TempQ1	llock im	lask
1	2015-12-15_11:34:07	200	7.837	0.294	30.2	15.0	0.000	1	245.6	0.7	10.3	21.8	-29.7	0 0	
	2015-12-15_11:33:27	69	0.267	0.266	48.1	48.0	4.200	1	25.6	0.7	10.5	40.3	40.9	0 0	
21	2015-12-15_11:33:28	6	0.290	0.289	47.8	48.0	4.200	1	27.6	0.7	10.3	41.5	40.7	0 0	
	2015-12-15_11:33:28	79	0.265	0.265	48.0	25.0	4.200	1	25.4	0.7	10.3	19.9	44.8	0 0	
	2015-12-15_11:34:08	58	0.338	0.314	47.9	25.0	4.200	1	31.3	0.6	9.8	44.0	43.6	0 0	
	2015-12-15_11:34:08	82	0.292	0.290	48.1	25.0	4.200	1	28.0	0.7	10.3	42.3	43.4	0 0	
	2015-12-15_11:34:09	68	0.265	0.266	48.0	25.0	4.200	1	25.5	0.7	10.3	44.5	43.3	0 0	
	2015-12-15_11:33:29	101	0.288	0.288	47.8	25.0	4.200	1	27.6	0.7	8.5	41.5	43.2	0 0	
	2015-12-15_11:34:09	59	0.292	0.289	47.6	25.0	4.200	1	27.6	0.7	10.0	41.5	43.9	0 0	
	2015-12-15_11:33:29	67	0.313	0.289	47.8	25.0	4.200	1	28.8	0.7	10.3	42.3	43.6	0 0	
14	2015-12-15_11:33:30	111	0.290	0.290	48.1	25.0	4.200	1	27.9	0.7	10.0	41.5	43.2	0 0	
	2015-12-15_11:33:30	109	0.289	0.289	48.1	25.0	4.200	1	30.1	0.7	10.0	41.9	43.1	0 0	
	2015-12-15_11:34:10	130	0.290	0.289	48.0	25.0	4.200	1	27.8	0.7	10.3	43.2	43.0	0 0	
	2015-12-15_11:34:11	27	0.266	0.266	48.1	25.0	4.200	1	25.6	0.7	10.5	41.5	43.6	0 0	
	2015-12-15_11:34:11	129	0.313	0.290	47.9	25.0	4.200	1	28.9	0.7	10.3	43.2	43.9	0 0	
	2015-12-15_11:33:31	96	0.313	0.289	48.0	25.0	4.200	1	28.9	0.7	10.3	41.5	42.8	0 0	

System Overview

• A web-server is used to provide the user interface by means of standard web-browsers giving access to the different services provided by the SOSDAQ, such as, system console, system overview, hardware access, variable editor, system configuration editor, datalogger, etc.

- Languages: Only Shell-script, C and Javascript. Full cross-platform compatibility. Less vulnerability to software updates and upgrades.
- Distributed processing, supervision and monitoring system.
- Successful efficiency optimization of the complete system using the proposed software.

SOSDAQ - Integration with EPICS

65kW 500MHz Amplifier System in Operation.

65kW 500MHz Amplifier System Performance

Vdd[V]	Pout[kW]	Pmains[kW]	Efficiency[%] (wall plug)**	Efficiency[%] (DC to RF)	Pin[W]
48	67	124	54	60.4	36.6
50	68	129.2	52.6	58.8	37.3

** Wall plug efficiency: ratio of RF power delivered to load (Pout) to mains AC power consumption (Pmains).

Pout [kW] x Pin [W] 70 60 60 50 50 Pout: Vdd=50 40 40 Pout [kw] Pout: Vdd=48 Eff: Vdd=50V 30 30 Eff: \/dd=48 20 20 10 10 10 15 20 25 30 35 40

Full 65kW Amplifier System Measurement Results: Pout and Efficiency vs Pin

Pin[W]

Full 65kW Amplifier System Measurement Results: Gain and Efficiency vs Frequency

Paul Scherrer Institut • 5232 Villigen PSI

Efficiency Optimization

Psi 500MHz 65kW Solid-state High Power Amplifier

Efficiency optimization at 30kW (black marker), Maximum Efficiency Operation (red marker) and Booster Operating Point (blue marker)

Comparison: Klystron Amplifier (incl. accessories) vs. SSPA (with efficiency optimization)

	Booster Duty c	r (pulsed) icle:50%	Storage Ring (CW) Beam current: 400mA					
	Klystron Amplifier: BO	SSPA 1x60kW System	Klystron Amplifier: SR3	SSPA 2x60kW System				
Pout	36kW	36kW	100kW	100kW				
Efficiency (wall plug)	11.2%	46.5%	40%	52%				
Price Estimated	1.8MCHF	400kCHF	1.8MCHF	800kCHF				

Paul Scherrer Institut • 5232 Villigen PSI

Gracefull Degradation Tests

Good agreement with theory:

$$C_{eff} = \frac{P'_o}{P_o} = \left[\sum_{m=1}^N \frac{K_{p_m}}{N}\right]^2 = \left[\overline{K_{p_m}}\right]^2$$

No damage with continuous operation up to 8 RF Amplifiers switched off.

1 RF Amplifier damaged when 10 RF Amplifiers were switched off, due to high reflected power in all amplifiers.

The same results obtained independently of the choice of which RF Amplifiers were switched off, i.e., randomly chosen or all connected to the same 9 Way output power combiner.

Full Reflection Tests

Pout	Operating time	Remark				
$10 \mathrm{kW}$	15min	No damage				
20kW	15min	No damage				
30kW	15min	No damage				
40kW	15min	No damage				
50kW	1min	No damage				
60kW	30s	No damage				

Measurements performed by placing a short circuit at output of the system.

Duration of measurements limited by the cooling system.

Solid-State RF Power Amplifier Installation in SLS

Water inlet and outlet

SLS Teststand

PAUL SCHERRER INSTITUT

ESLS-RF 2016

SLS Teststand and Booster RF Distribution

Tests performed after installation in SLS

1- Tests performed with 80kW water cooled RF load.

Succesful operation at RF output power up to 56kW.

RF load damaged due to cooling problems. No damage to the Solid.state amplifier due to full reflextion.

External temperature of the 6 1/8" output coaxial transmission line exceeds 40°C in long duration operation.

2- Tests performed with the SLS cavity (installed in SLS Teststand). Cavity conditioning up to 56kW.

Continuous operation at different output power levels, up to around 56kW.

3- Normal operation with the SLS booster.

The feedback loop worked very well after we added a phase shifter to compensate for the phase offset.

Succesful operation with the booster trapezoidal ramp. The ramp was identical to the klystron ramp as expected.

Maximum RF ouput power (top of trapezium) around 40kW.

Up to now the test duration was limited to 2 days.

Thank you

65kW 500MHz Solid-state Power Amplifier System Installed in SLS.

Special Thanks to all members of the PSI High Frequancy Section. The realization of this work would not be possible without their help and competence.

* We acknowledge the financial support of the Swiss Commission for Technology and Innovation under grant number 13192.1 PFFLM-IW.

M. Gaspar and T. Garvey. IEEE-Trans Nucl. Sci., v63,issue2:699-706, (4/2016)
M. Gaspar and T. Garvey. IPAC-15, WEPHA027, (2015)
M. Gaspar et al., NIM-A, 637:8–24, (2011)

References