
VIPER
(Visual Processing in EXAFS Researches) for Windows

Users Manual and Tutorial
with comments on analysis methods in EXAFS

version of manual 2.20
version of program 11.00

2 April 2012

K. Klementiev 

CELLS-ALBA, Carretera BP 1413, km. 3, E-08290 Cerdanyola del Vallès, Barcelona SPAIN

www.cells.es/Beamlines/CLAESS

1

http://www.cells.es/Beamlines/CLAESS


Contents
1 Introduction                                                                                                                                                                               ...........................................................................................................................................................................  4  

1.1 What is VIPER?                                                                                                                                                                  ..............................................................................................................................................................  4  
1.2 What makes VIPER special?                                                                                                                                               ...........................................................................................................................................  4  
1.3 System requirements                                                                                                                                                           .......................................................................................................................................................  4  
1.4 About this manual                                                                                                                                                                ............................................................................................................................................................  4  

2 Opening data files                                                                                                                                                                      ..................................................................................................................................................................  4  

3 Short tips to the program interface                                                                                                                                         .....................................................................................................................................  5  

4 Working with experimental signals                                                                                                                                         .....................................................................................................................................  7  

4.1 Energy calibration                                                                                                                                                               ...........................................................................................................................................................  8  
4.1.1 Constant angle shift                                                                                                                                                     .................................................................................................................................................  8  
4.1.2 Constant lattice shift                                                                                                                                                    ................................................................................................................................................  9  
4.1.3 Constant energy shift                                                                                                                                                 .............................................................................................................................................  10  
4.1.4 Which shift to use?                                                                                                                                                    ................................................................................................................................................  11  

4.2 Absolute absorption coefficient                                                                                                                                         .....................................................................................................................................  11  
4.3 Marking glitchy regions                                                                                                                                                    ................................................................................................................................................  12  
4.4 Getting µ and χ                                                                                                                                                                  ..............................................................................................................................................................  12  
4.5 How to go back to the Currents window?                                                                                                                         .....................................................................................................................  12  

5 Working with µ and χ                                                                                                                                                             .........................................................................................................................................................  13  

5.1 Deglitching                                                                                                                                                                        ....................................................................................................................................................................  13  
5.1.1 Step (jump) glitches                                                                                                                                                   ...............................................................................................................................................  13  
5.1.2 Sharp glitches                                                                                                                                                            ........................................................................................................................................................  14  
5.1.3 Switching off glitch coloring                                                                                                                                     .................................................................................................................................  15  

5.2 Pre-edge background                                                                                                                                                         .....................................................................................................................................................  15  
5.2.1 Corrections of pre-edge background                                                                                                                        ....................................................................................................................  16  
5.2.2 How the far end of μ should behave?                                                                                                                        ....................................................................................................................  16  
5.2.3 Which polynomial to choose for the pre-edge of transmission spectra?                                                                  ..............................................................  16  
5.2.4 Show μ normalized                                                                                                                                                    ................................................................................................................................................  17  

5.3 Setting E0                                                                                                                                                                          ......................................................................................................................................................................  17  
5.4 Setting k mesh                                                                                                                                                                   ...............................................................................................................................................................  17  

5.4.1 How to choose kmin?                                                                                                                                                ............................................................................................................................................  17  
5.4.2 How to choose kmax?                                                                                                                                                ............................................................................................................................................  18  
5.4.3 How to choose dk?                                                                                                                                                    ................................................................................................................................................  18  

5.5 Construction of post-edge background µ0                                                                                                                        ....................................................................................................................  18  
5.5.1 μ0 as a spline drawn through varied knots                                                                                                               ...........................................................................................................  18  
5.5.2 μ0 as a smoothing spline                                                                                                                                           .......................................................................................................................................  20  
5.5.3 μ0 as a Bayesian smoothing curve                                                                                                                            ........................................................................................................................  22  

5.6 Normalization of χ                                                                                                                                                             .........................................................................................................................................................  23  
5.7 Corrections to μ and χ                                                                                                                                                        ....................................................................................................................................................  23  

5.7.1 Self-absorption correction                                                                                                                                         .....................................................................................................................................  23  
5.7.2 Description of self-absorption correction                                                                                                                 .............................................................................................................  24  
5.7.3 Realization in VIPER                                                                                                                                                ............................................................................................................................................  24  
5.7.4 Example of self-absorption correction                                                                                                                      ..................................................................................................................  26  

5.8 k-weighting of χ                                                                                                                                                                 .............................................................................................................................................................  27  
5.8.1 What k-weighting to use?                                                                                                                                          ......................................................................................................................................  27  

5.9 Subtracting EXAFS due to another closely situated absorption edge                                                                               ...........................................................................  28  
5.10 Deconvolution of life-time and experimental broadening                                                                                               ...........................................................................................  29  

5.10.1 How to select the regularizer?                                                                                                                                ............................................................................................................................  30  
5.11 Combining several spectra together                                                                                                                                ............................................................................................................................  30  

6 Fourier analysis                                                                                                                                                                       ...................................................................................................................................................................  31  

6.1 Forward Fourier transform (FT)                                                                                                                                        ....................................................................................................................................  31  
6.2 Back Fourier transform (BFT)                                                                                                                                           .......................................................................................................................................  31  
6.3 Notes on the program interface                                                                                                                                         .....................................................................................................................................  32  
6.4 Selection of kmin and kmax                                                                                                                                              ..........................................................................................................................................  32  
6.5 Which windowing function to use?                                                                                                                                   ...............................................................................................................................  33  
6.6 FT pre-correction                                                                                                                                                               ...........................................................................................................................................................  34  
6.7 Extraction of amplitudes and phases                                                                                                                                 .............................................................................................................................  34  

7 Experimental errors in EXAFS curve                                                                                                                                   ...............................................................................................................................  35  

7.1 Using the high-r portion of χ(r)                                                                                                                                         .....................................................................................................................................  35  

2



7.2 Using FT filtering                                                                                                                                                              ..........................................................................................................................................................  36  
7.3 Using μ0 obtained by Bayesian smoothing                                                                                                                       ...................................................................................................................  36  
7.4 Using Bayesian deconvolution                                                                                                                                          ......................................................................................................................................  37  
7.5 Using μ0 drawn through varied knots                                                                                                                               ...........................................................................................................................  37  
7.6 Using standard deviation of multiple data                                                                                                                         .....................................................................................................................  37  
7.7 Calculated from a user formula                                                                                                                                         .....................................................................................................................................  38  
7.8 Comparison of different estimations of experimental errors                                                                                             .........................................................................................  38  

8 Fitting EXAFS                                                                                                                                                                         .....................................................................................................................................................................  39  

8.1 Fitting by ordinary EXAFS formula                                                                                                                                  ..............................................................................................................................  39  
8.1.1 How about multiple scattering (MS) fitting? Can VIPER do it?                                                                               ...........................................................................  40  
8.1.2 Why the energy shift is not global but is different for different shells?                                                                     .................................................................  40  
8.1.3 How to load a model and save the fitting results?                                                                                                    ................................................................................................  40  
8.1.4 How to create a new model?                                                                                                                                     .................................................................................................................................  42  

8.2 Fitting by a user-expanded EXAFS formula (cumulant expansion)                                                                                 .............................................................................  42  
8.3 Fitting using radial distribution function specified by user-defined formula                                                                    ................................................................  42  
8.4 Fitting using oscillatory potential U(r) of the absorber-scatterer pair                                                                               ...........................................................................  43  
8.5 Multi-edge fitting                                                                                                                                                               ...........................................................................................................................................................  44  
8.6 Fitting in k- and r-space                                                                                                                                                     .................................................................................................................................................  45  
8.7 Is it possible to fit S02?                                                                                                                                                     .................................................................................................................................................  45  
8.8 Details of the fitting algorithm                                                                                                                                          ......................................................................................................................................  46  

9 Statistical evaluations in fitting                                                                                                                                              ..........................................................................................................................................  46  

9.1 χ2 statistics                                                                                                                                                                         .....................................................................................................................................................................  46  
9.2 Posterior distribution                                                                                                                                                         .....................................................................................................................................................  47  
9.3 Simplest cases: partial correlations                                                                                                                                   ...............................................................................................................................  47  
9.4 General case: total correlations and a priori information                                                                                                  ..............................................................................................  48  
9.5 Most probable a priori weight                                                                                                                                           .......................................................................................................................................  49  
9.6 What if the experimental errors εi were determined incorrectly?                                                                                     .................................................................................  50  
9.7 What if the experimental errors εi are unknown?                                                                                                              ..........................................................................................................  50  
9.8 'Statistical evaluations' dialog                                                                                                                                            ........................................................................................................................................  50  
9.9 Statistical tests                                                                                                                                                                   ...............................................................................................................................................................  51  

9.9.1 χ2-test                                                                                                                                                                        ....................................................................................................................................................................  51  
9.9.2 F-test                                                                                                                                                                          ......................................................................................................................................................................  51  

9.10 Appendix                                                                                                                                                                         .....................................................................................................................................................................  52  

10 Exporting data and saving project file                                                                                                                                ............................................................................................................................  53  

 References                                                                                                                                                                                  ..............................................................................................................................................................................  53  

3



1 Introduction

1.1 What is VIPER?

VIPER is a program for data analysis of EXAFS spectra. It includes:

 pre-processing of raw data with energy calibration, deglitching, deconvolution, advanced self-
absorption correction etc.,

 various procedures for extraction of the EXAFS part,
 merging of spectra,
 Fourier-analysis,
 fitting procedures for the first few coordination shells, including multi-edge fitting,
 advanced error analysis.

VIPER does not include calculation of scattering amplitudes and phases. I use FEFF for this or, for 
well isolated in  r-space first coordination shells, I extract the amplitudes and phases from reference 
spectra in VIPER. VIPER also does not produce publication quality graphs. It only exports column 
files to be loaded by Matplotlib, QtiPlot, Origin etc.

1.2 What makes VIPER special?

Any time, all curves and their changes under processing are visual. The visualization is not only a mat­
ter of convenience; it serves for the ultimate quality check of experimental data and processing steps 
by the program user.

VIPER is also useful for quick quality check during your beam time at synchrotrons. A simple drag-
and-drop action reveals in a second the spectrum quality and reproducibility in E-, k- and r-space.

1.3 System requirements

VIPER runs on all 32- and 64-bit Windows systems. It can run under Linux with Wine. The minimum 
screen resolution is recommended as 1024 768.

Originally,  VIPER was  a  16-bit  program that  could  not  run  on  64-bit  Windows.  I  thank Roman 
Chernikov (Hasylab at DESY) for making the 32-bit build.

1.4 About this manual

It  is essential  to download and unpack the archive with several important  examples (see the front 
page). I have tried to explain all the aspects of the program that may be useful to its user in setting up 
his or her analysis of EXAFS spectra. Some of the aspects are not quite standard or, being standard, 
are questionable. These are considered with higher attention.

2 Opening data files
You can select multiple files using Ctrl or Shift 
buttons or by mouse dragging. The name of the 
last opened file is colored by red. The design of 
the Load data dialog is old fashioned; the files 
are  always  sorted  by  name whereas  frequently 
time  sorting  is  more  convenient.  Therefore  I 
recommend  drag-and-drop  technique  combined 
with  your  favorite  file  commander  or  Explorer. 
This way is very useful at a beamtime, when you 

quickly add a newly measured file to the already opened ones by simple drag-and-drop from your 
time-sorted directory. I use the Load data dialog mostly to set up new data formats and, sometimes, to 
manually  select  the  file  format.  The  latter  is  needed  when  the  same  file  has  transmission  and 
fluorescence signals and one wants to load both. In this case one needs two formats described and, of 
course, only one of the two will be recognized automatically.
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Important: you can load multiple files and do drag-and-drop only provided your file format is recog­
nized automatically (i.e. when you see the format name updated correctly in the 'Load data' dialog after 
you have clicked a file name).

The number of the loaded spectra is restricted by your RAM. I used to work with a hundred of spectra. 
However, redrawing becomes slow. In this case you can 'Hide all other spectra' in the 'Spectra' menu.

Specify the file header. Give one or two sub-strings contained in the header 
for automatic recognition. If your file is recognized incorrectly, try to find 
other unique sub-strings or use button 'Up' to place your format earlier in the 
recognition queue.

In the description of the data columns one can use (almost) any function of 
variables  Col1 … Col52. For instance,  one can load several  fluorescence 
signals i1 as, say,  Col5+Col6+...  or, better,  one can load these signals as 
separate spectra for better visual quality checking.

The internal energy unit is eV. Therefore if your energy unit is different, you 
should do a transform, like Col4*1e6. For keV unit there is a dedicated option.

The 'reference curve' is only needed for energy calibration and can be left 
empty. Usually, this is the absorption coefficient of a reference foil placed 
between the 2nd and the 3rd ionization chambers. Correspondingly, it is given 
by ln(i1/i2).

The format descriptions are saved in a text file formats.ini. If you want to 
transfer it to another computer, just copy it to the VIPER directory. You can manually merge various 
formats.ini files using a common text editor; re-number then the strings properly.

3 Short tips to the program interface
to see this, open Samples/PdC_color.vpj:
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In every window use the pop-up menu to access the most  frequent commands,  e.g.  to restore the 
default zooming. Use the legend entries to access the line properties.

The 'Spectra' menu at the very top of the main window can be 
activated by flying the mouse cursor over it. Use the 'Spectra' 
menu to switch between the loaded spectra, change their se­
quence, add or remove spectra, access the line properties etc.

Note that all properties in many dialogs refer to the  current  
spectrum which you can select here. Use this menu also to 
apply the selected options to the other spectra.

You can select spectra for visualizing/hiding.

Note  that  all  the  colors  here  refer  to  the  current  (active) 
window.

There are three ways for visual identification of spectra:

1) by colors (load example Samples/PdC_color.vpj):

The line properties can be set collectively by specifying the color ranges. Within each range, the specified 
number of spectra are evenly spaced in the RGB color space towards the next color range. If the range is 
single, all the lines of a given kind will be equally colored for each spectrum. A single range is recom­
mended for the lines which are only visible for the current spectrum such as μ0 or μb lines.

The 'dots' line style puts dots not equidistantly but at the data points.

2) by dimming the inactive spectra (load example Samples/PdC_dim.vpj):
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3) by 'washing out' the inactive spectra (load example Samples/PdC_wash.vpj):

4 Working with experimental signals
to see this, open Samples/glitch.vpj and close 'mu' window by pressing the cross in its top right corner:

Select now transmission or fluorescence mode. If you did it false, you can redo this at a later stage, 
even with active χ, FT and BFT windows.
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4.1 Energy calibration

Visualize the derivative of the reference curve. Now all the currents refer to the left Y-axis and the de­
rivative refers to the right one. Zoom in the derivative peak, as seen on the screenshot.

Tip: derivative of μ is used for foils only. When the sample is a foil, usually you do not put the foil 
also at the reference position. In this case you use the derivative of μ for the sake of energy calibration 
but not the derivative of the reference spectrum.

Now select the reference energy. If your energy mesh around the absorption edge is fine, just use 'max­
imum of reference curve derivative'. In the example shown the mesh was rough, 0.5 eV. Therefore 
such a calibration will not improve the energy reproducibility between the two spectra (try it!). In this  
case much better calibration is given by manual positioning of the reference energy. For this, use 'user-
defind point' and the pop-up menu command 'Set reference energy' (and put it somewhere close to the 
peak maximum) until you merge all the reference curves. You can see the resulting energy shift in the 
drop-down list:

[A  note  for  future  development]  An  option  should  be 
offered  for  the  parabolic  interpolation  around  the 
maximum  of  reference  curve  derivative.  A  similar 
interpolation is shown in Section 6.3.

4.1.1 Constant angle shift

The most frequent reason for energy shifts seems to be a Bragg angle shift. This can be due to (i) back­
lashes in the gearbox or (ii) elastic angular shift between the Bragg axis and its encoder or (iii) wrong 
energy calibration caused by a wrongly calculated angular offset (yes, this happens frequently).

How it works (here  is a shift, ∂ is its error and  is a scan range):
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Now we neglect
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Let us take  =10-4,  =13º, i.e. the energy shift  E~ 4eV @ Cu K-edge, and  =1º (i.e. the energy 
range E ~ 1 keV). The error in the energy correction is then ∂(E) ~ 4 meV to the end of the spectrum 
and is really negligible.

Let us see what error we get when we by mistake do a "constant E" correction to a constant angle shift. 
We modify the final expression slightly:
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For the example above this gives ∂E0.8 eV to the end of the spectrum, or ∂k=k(Eref/Eref)0.007 Å−1, 
or ∂r0.001 Å for the distance determination in the 1st coordination shell. In most EXAFS applications 
this is negligible and a constant energy shift calibration can be acceptably applied. This is especially 
true for XANES spectra, as the mis-calibration is proportionally smaller for short spectral range E.

4.1.2 Constant lattice shift

Another reason for energy shifts is a wrong assumption on the lattice constant of the monochromator  
crystal because it was taken for a temperature different from the working one.

How it works:
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Let us see what error we get when we by mistake do a "constant E" correction to a constant lattice shift.
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This error is twice as smaller as compared to the constant angle shift, and for the example above this 
gives ∂E ~ 0.4 eV to the end of the spectrum.

The following screenshots demonstrate the three energy shifts along the spectrum:
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4.1.3 Constant energy shift

Such a shift is usually implemented in other EXAFS analysis programs. Here it is implemented as 
well. Its main application is for the alignment of two various absorption edges, as in the following ex­
ample of the Pt L3 and L2 edges.

As is well known, EXAFS of L3 and L2 edges are 
very similar:

If we now want to compare XANES, we shift L2 to L3 or in the reverse way. This shift has nothing to 
do with wrong Bragg angle and should be of constant energy. What happens if we shift it with a con­
stant angle shift? This would lead to a non-uniform shift along the spectrum (see the drop-down list):

and to false contraction or expansion of the shifted spectrum (here the two L2 edges are shifted towards 
L3(dark): one with constant energy shift (red), the other with constant angle shift (also dark); the latter  
one gives the false out-of-phase EXAFS):
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4.1.4 Which shift to use?

The answer should be explored for every XAS beamline. Ask the beamline scientists for possible reas­
ons of energy drifts, they must know their instrument. As mentioned at the end of Section 4.1.1, con­
stant energy shift works well in most cases. It does not work well when the reference edge is not the 
same as the one of the sample. This is a frequent case for L edges of rare earths when 3d metal foils  
are used for energy calibration.

4.2 Absolute absorption coefficient

The absolute absorption coefficient is useful for the determination of an unknown elemental concentra­
tion, see XAFSmass.

The material absorption µd is given by x-ray intensities before and after the sample,  I0 and I1: µd = 
ln(I0/I1), where µ is the linear absorption coefficient, d is the sample thickness. However, the quantities 
measured in a transmission XAS experiment are not I0 and I1 themselves, but some values proportional 
to them, e.g. currents of ionization chambers, i0=0I0 and i1=1I1. By taking the logarithm of their ratio, 
ln(i0/i1)=µd+ln(0/1),  one  obtains  a  vertically  displaced  value  of  absorption.  The  second  term, 
ln(0/1), is only slightly energy dependent and usually implicitly included into the background. This 
term can directly be measured by taking a spectrum of an empty experimental apparatus (hereafter re­
ferred to as "empty spectrum"), when µd is known to be zero. The absolute absorption is given then by 
µd = ln[(i0/i0

empty)·(i1
empty/i1)]. It should be noticed that the experimentally obtained i0 and i0

empty are not 
necessarily identical:  the empty spectrum is a smooth function,  it  therefore can be measured on a 
sparse grid with short sampling time and then mathematically smoothed and interpolated. Moreover, in 
synchrotron radiation the beam instabilities are often much stronger than the statistical noise. There­
fore the signals i0 and i1 (or i0

empty and i1
empty) are positively correlated and should be kept together in the 

ratio. Thus, even being measured on the same grid, the ratio i0/i0
empty must not be canceled.

VIPER provides a procedure for dividing transmission spectra by empty spectra. It may happen that i1 

of the empty spectrum was recorded with a different amplification. The corresponding factor must be 
remembered.
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4.3 Marking glitchy regions

For  visualizing  suspicious  regions  and for  subsequent  deglitching  of  µ  or  it  is  useful  to  mark 
glitches on the primary signals, i.e. currents, and to retain the marking on µ or  curves. This can be 
done by clicking on the i0 curve:

or by manual leveling of the logarithm derivative in the button bar: the lower is the level the more re­
gions are marked by color. 

Alternatively, you can use the pop-up menu command "Mark region as a glitch".

4.4 Getting µ and χ

Press the 'get ' button or F2: 

to get this:

4.5 How to go back to the Currents window?

You may need this sometimes, e.g. if you want to redo energy calibration or to switch the acquisition 
mode (fluorescence or absorption) when you did it wrong. The Currents window is hidden behind the 
other windows. To switch to it, use the top menu 'Window' or the standard Windows combination 
Ctrl+F6. You can also close the μ window; all the downstream windows will close as well. Then you 
can do 'get ' again with all the parameters in 'Get chi(k)' dialog restored automatically.
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5 Working with µ and χ
If you start right from here, load Samples/glitch.vpj project.

5.1 Deglitching

Note that any manipulation with the data will not change the original files. If you want to save the de­
glitched curves, export them to new column files, see Section 10. Even if you save a project file [a pro­
ject file describes all the loaded files and actions on them], the deglitching steps will not be repeated 
when you load the project file.

Also note that there is no undo for the deglitching manipulations. If unsatisfied with the result, you  
have to load your data again.

5.1.1 Step (jump) glitches

1) zoom the step glitch on  spectrum #2 at ~8.3 Å−1:

2) In  window use the pop-up menu command 'Zoom corresponding 
mu(E) curve',

3) and click on the glitch.  Now the glitch  is  zoomed 
also in µ window. Zoom it further as convenient. In µ 
window use the pop-up menu command 'Jumping glitch 
correction':
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4) Now click on the right of the jump… 5) …and then on the desired position for it:

5.1.2 Sharp glitches

"Usual" sharp glitches are seen on both spectra at ~13.2 Å−1.

5.1.2.1 Scale (compress) glitch

1) Zoom the glitch on   curve by left click-and-drag and use the 
pop-up menu command 'Scale glitch':

2) select the left of the glitch: 3) and the right of the glitch: 4) click somewhere below or above 
the glitch and drag into the glitch:

5) After mouse button release:
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5.1.2.2 Replace glitch by a spline

Switch to the other spectrum and in  window use the pop-up menu command 'Zoom corresponding 
mu(E) curve'. Magnify it further in µ window. 

1) Use the pop-up menu command 'Replace glitch 
by a spline':

2) Select the left of the glitch:

3) the right of the glitch: 4) Specify the number of nodes and adjust 
them by mouse:

Watch how the  curve is changing. Press 'Replace' when ready.

5.1.2.3 Delete glitch

Zoom the glitch on  curve and then on µ curve (pop-up menu 'Zoom corresponding mu(E) curve'). In 
µ window do 'Delete glitch region'.

5.1.3 Switching off glitch coloring

The glitch marking can be switched off by setting a big threshold value to the logarithm derivative in 
the button bar:

5.2 Pre-edge background

The pre-edge background is constructed by polynomial interpola­
tion over the region specified by mouse:

or in a small dialog invoked via this small button:

The polynomial law is given by the power buttons:
 (modified Victoreen)
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For absorption spectra measured in transmission mode, usually a Victoreen polynomial aE3+bE4 or a 
modified Victoreen polynomial  aE3+b is implied, where the coefficients are found by the standard 
least-squares method.

For  absorption  spectra  measured  in  fluorescence  mode,  background  subtraction  is  frequently  not 
needed (unselect all the power buttons). More frequently a constant shift is sufficient (select button 
"0"). Sometimes the spectra exhibit a net growth with energy, which can be approximated by a linear  
law (select buttons "0" and "1").

5.2.1 Corrections of pre-edge background

On some low-quality spectra the background behaves 
strangely: it bends up or even may cross the  curve. 
For  example,  a  reason  for  this  can  be  strong  self-
absorption.  Whatever  the  reason is,  you  can  correct 
this:  do  (i)  normalization  to  a  constant  value  (see 
Section  5.6)  and  (ii)  apply  corrections  to  the 
background. For the latter, use the pop-up menu 'Pre-
edge background correction' in  window:

and click somewhere you believe 
the background must  go through. 
You can then drag the correction 
node by mouse (right picture).

5.2.2 How the far end of μ should behave?

There  is  quite  a  widespread  belief  that   above  an 
absorption edge must in average go parallel to abscissa. 
Some  EXAFS  analysis  programs  offer  dedicated 
procedures  to  achieve  this  behavior,  e.g.  a  post-edge 
polynomial  fit  with subsequent  subtraction.  In order  to 
check whether this is true, let us take various tabulations 
of atomic scattering factors using XAFSmass (its  web-
page  provides  the  theoretical  references  used)  and 
calculate the linear absorption coefficient as f2/E with 
the  subsequent  pre-edge  subtraction  and  normalization 
using  XANES  dactyloscope.  The  graph  on  the  right 
shows  's  for Cu at  the K-edge with a typical  EXAFS 
length of ~1 keV. The curves look different at the edge 
because of different energy grids; some of them are very 
sparse. Important here is the far end behavior. As seen, 
's are not constant and do decrease by ~20% at 1 keV. 

5.2.3 Which polynomial to choose for the pre-edge of transmission spectra?

The usual options are Victoreen or modified Victoreen. Strictly speaking, the Victoreen polynomial is 
correct only for the true, not vertically displaced, absorption. The experimentally determined  's are 
displaced (see Section 4.2). Moreover, the shift is not constant but (weakly) energy dependent due to 
the energy dependence in (i) source/optics properties, (ii) efficiency of ionization chambers or PIN di­
odes, (iii) transmittance of windows, air paths etc. if any. To my experience, the different options on 
the pre-edge polynomial give EXAFS curves which differ from each other by a factor similar to those 
given by (i)–(iii). The total energy dependent displacement of absorptance is usually <0.1 at ~1 keV 
above the edge. This propagates to some uncertainty in Debye-Waller factors which is, in my experi­
ence, always smaller than the fitting errors.

Finally, the answer is: it does not really matter because there are more important sources for the errors 
in the sought structural parameters. I usually use the modified Victoreen.
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5.2.4 Show μ normalized

When you play with the pre-edge it is convenient to have it visible. For this, chick the box:

When  you  uncheck  it,  i.e.  when  you  do  the  subtraction,  you  can 
normalize   by the pop-up menu command 'Show mu normalized' 
(this command is not available with non-subtracted background):

5.3 Setting E0

Usually E0 energy (the origin for the photo-electron wave number) is set at the first inflection point of :

Frequently absorption edges have several peaks on the 1st derivative. The first one is not necessarily 
the highest. Therefore the automatic peak search may fail. Watch out: sometimes there are two peaks 
of almost the same height and in two different scan repetitions the automatically E0 can suddenly jump 
so that EXAFS will look differently. This happened with K-edges of some 4d elements.

You can visualize the derivative curve (picture on the right) 
and move E0 to the first peak manually (by mouse).

It is not important where to put  E0 because usually  E0 is one 
(or  more  if  used  independently  for  different  coordination 
shells) of the fitting parameters (see Section 8.1.2).

Now, after E0 has been defined, the energy dependence of  is 
transformed to the wave number dependence as:

k=2 me E−E0/ℏ

5.4 Setting k mesh

The limits kmin and kmax can be set by mouse in  and in  windows :

The equidistant k mesh can be specified by the grid size dk or by the number 
of nodes.

The  absorption  coefficient   is  transformed  to  this  mesh  by  spline 
interpolation.  If  the  option  'sum  close  points'  is  checked  then  close 
experimental points are summed when fall into a single dk segment.

5.4.1 How to choose kmin?

The answer depends on the way of how 0 is constructed. See Section 5.5.1 or Section 5.5.2.1. kmin also 
affects Fourier transform, see Section 6.4.
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5.4.2 How to choose kmax?

First set it to maximum (i.e. all available data are used). See where signal of c becomes weaker than 
noise, either by eye or using one of the procedures given in Section 7. kmax also affects Fourier trans­
form, see Section 6.4.

5.4.3 How to choose dk?

Read  [Press  et  al.,  Numerical  Recipes  (1992-2007)  chap.  12.1  Fourier  Transform  of  Discretely 
Sampled Data]. In short: if your (r) is believed to contain nothing but noise above the critical distance 
rc then dk=1/(4rc), where an additional factor 2 in the denominator is due to the doubled kr product in 
the EXAFS FT. For typical  rc=10Å this makes  dk=0.025Å. If your  dk is greater, the Fourier-trans­
formed signal (r) at r>1/(4dk) will be folded or "aliased" into the range r<1/(4dk), which gives a dis­
torted FT, especially at large r. For example, if your dk=0.1 Å, you can analyze EXAFS only up to rc 

= 2.5 Å, i.e. only the 1st coordination shell, with (r), possibly, strongly aliased.

Note, you have to measure with small enough dk, it does not make sense to interpolate to a finer mesh 
afterwards!

5.5 Construction of post-edge background µ0

VIPER offers three ways of constructing the post-edge background 0 (called also atomic-like absorp­
tion): (i) by a spline drawn through the knots varied to minimize the low-r EXAFS FT part; (ii) by a 
smoothing spline and (iii) by a Bayesian smoothing curve.

5.5.1 μ0 as a spline drawn through varied knots

This example can be loaded as Samples/PdKnots.vpj:

In this procedure you can manually pre-adjust the knots, also horizontally (use the pop-up menu in  
window for this). By default, the knots are positioned equidistantly in k-space. Now choose the minim­
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ized FT region and let the minimization start. I recommend to begin the fitting with a few first knots  
and then after several Start/Stop cycles gradually to include all knots. The maximum available number 
of knots can be seen in the Statistics dialog as denoted by N. See Section 9.8 for details on statistical 
evaluations.

The provided example already has a well optimized set of knots, so you may play with the Statistics 
dialog right away:

The  colored  matrix  shows  the  pair-correlation 
coefficients. Completely red and blue denote +1 and 
1, black is 0. The coefficient  r21 is pointed at by the 
cursor and its  value (0.991) is displayed above the 
matrix. Such a strong correlation means that the first 
knot  may  acquire  a  variation  and  the  thus  induced 
difference  in  the  target  function  (here,  the  power 
spectrum in the minimized FT region) can be almost 
fully compensated by a variation of the second knot. 
These words are illustrated by the black-yellow graph 
showing a constant-level map of the target  function. 
The  map  is  strongly  stretched,  which  shows  that 
uncertainty  in  one  fitting  variable  is  projected  onto 
uncertainty in the other fitting variable. This leads to 
big fitting errors for the first few knots and therefore 
for (k) at k<~3 Å. The fitting errors are listed at the 
left of the correlation matrix.

This  procedure  is  also  not  stable  in  respect  to  the 
variation in the number of the knots. In the following 

examples the spline is drawn through 11 and 12 knots. The two 's differ at low-k:
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Finally, the method works well when  is cut off at low k. There is quite an advantage of this method: 
0 contains only low-frequency oscillations whereas   preserves all  the true structural oscillations. 
This is not the case for the smoothing techniques (see below), where the resulting  partially loses its 
signal and transfers it towards 0.

There  is  a  possibility  to  fit  the  power  spectrum  in  the 
minimized FT region not to zero but to the power of another, 
usually  calculated,  spectrum.  On  one  hand,  this  procedure 
accounts  for  the  leakage  of  some  signal  from  the  1st 

coordination shell into the minimized FT region. On the other 
hand, a calculated spectrum assures that there is no unphysical 
signal in that region. This option is especially important for 
oxides where, contrary to metals, the 1st coordination shell is 
at relatively short distance:

5.5.2 μ0 as a smoothing spline

This method is the simplest and therefore, probably, the most 
frequently  used.  The  0 curve  is  constructed  from  the 
experimental   spectrum  by  smoothing  out  the  EXAFS 
wiggles.

0 is weakly energy dependent as can be seen on absorption 
spectra  of  gases.  Moreover,  there  can  be  weakly  changing 
experimental factors to it, as listed in Section 5.2.3. Thus, the 
smoothing spline should allow for such slow variations.

The smoothing spline depends on a parameter that specifies its stiffness. If the parameter is big, the 
spline approaches a straight line and disallows the slow variation. This is manifested by the non-phys­
ical signal in the low-r FT:

If the parameter is small, the spline approaches the  curve and thus  goes to zero:
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Hence, between the extreme inappropriate values there must be an optimum. VIPER offers an automatic 
procedure to find it, as described in [Klementev, 2001a]. To my experience, this procedure tends to 
somewhat underestimate the smoothing parameter. How to judge if it is good? See Section 5.5.2.1.

If you now set  kmin to zero, you see that because the spline is relatively stiff, it bends too high right 
after the edge and the low-r FT gets some false signal:

Nevertheless, one can go to lower  k values due to the following advanced feature of the smoothing 
spline procedure. It can take into account a priori knowledge on the shape of the final 0 curve. The 
same also holds for the Bayesian smoothing procedure. See [Klementev, 2001a] for detail. We can 
safely assert that 0 looks like a step function:

This step function can be constructed from the experimental spectrum: it follows  until it reaches the 
height of the edge, thereafter it is constant. This step can be smoothed and moved horizontally and ver­
tically. The latter affects (r) at low-r quite strongly. See the next Section for how to set it.

5.5.2.1 Criterion for a good μ0. AXAFS.

How to set kmin, smoothing parameter, step height etc? The criterion is simple: no false FT signal until 
the peak of the 1st coordination shell.

How about AXAFS?

Some EXAFS researchers claimed "atomic-XAFS" ("AXAFS") to give a significant contribution into 
low-r FT signal. Almost exclusively they belong(ed) to Koningsberger’s group (Inorganic Chemistry in 
Utrecht University). There are some papers on AXAFS also by Baberschke et al. (Physics, FU Berlin).

The AXAFS phenomenon is explained as the usual EXAFS with the difference that the photoelectron 
scattering occurs not by the atomic potentials but rather by interstitial potential or charge density. Wende 
& Baberschke [1999] (also Rehr et al. [1995]) have calculated AXAFS by FEFF and found it to be quite 
strong. Several works by Koningsberger et al. [Ramaker et al., 2000] established a procedure on how to 
separate AXAFS from multi-electron excitations which may also contribute to the low-r (r) signal.

I have spoken to many EXAFS people on this topic and I think there is a strong belief that AXAFS is 
more artifact than a real phenomenon that can be used as a research instrument. My personal doubts 
are the following:
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1) For a wave to be efficiently scattered by any object, the wave length must be of the order of the object 
size. For an electron to be efficiently back-scattered by a free electron (and electrons in the interstitial re­
gions are almost free), its wave length must be of the order of the electron radius, r0~3·10-5 Å. Typical 
photoelectron wave lengths in EXAFS regime are ~104 times longer than r0. Hence, if such scattering ex­
ists, it is by atomic potentials, not by local charge density, as claimed by Baberschke et al. Therefore the 
numerous conclusions on charge transfer made on the basis of AXAFS are questionable.

2) The amplitude of k-weighted AXAFS reported by Wende&Baberschke is stronger than 0.1 Å in 
the range k<~10 Å. This is comparable with the contribution of 6 oxygen atoms in the 1 st coordina­
tion shell! Why then the next-shell interstitial contributions have never been reported and the standard 
EXAFS, without AXAFS, works well, as proven on many reference compounds? Where is the distant-
shell AXAFS?

3) The weak-potential inter-atomic regions are large. When treated in a usual EXAFS way, they should 
have huge distance variance of the order 2~0.1 Å2. The Debye-Waller factor exp(2k2) must damp 
the AXAFS oscillations already at  k>3Å. For such a strong and far oscillating AXAFS, as given by 
FEFF, the scattering potential must have a very well localized feature. It is there, the muffin-tin wall. 
Thus the calculated AXAFS seems to be an artifact due to the muffin-tin jumps rather than a real ab­
sorption feature.

4) Why in the big article by Rehr & Albers [2000] there are only two sentences about AXAFS, and 
nothing about it as a real tool? They write (in Section II.B.1): "However, a definitive theory of atomic 
XAFS will likely require corrections to the muffin-tin approximation." I read this as a soft version of 
"Sorry, FEFF cannot (and could not) calculate it". In fact, the whole modern story (after 1995) about 
AXAFS began from FEFF calculations, and it seems that without FEFF AXAFS has no confirmation.

5) Does any other EXAFS code see AXAFS? To my knowledge, no. But I might be wrong here.

5.5.3 μ0 as a Bayesian smoothing curve

This procedure is rather slow. For speeding it up, there is an option of the preceding n-point smoothing 
where the experimental points are grouped into Npoints/n knots. The Bayesian smoothing curve is very 
similar to the smoothing spline. When without the preceding smoothing, it is exactly the same as the 
smoothing spline. However the  Bayesian  0 has an important addition: as the final values are calcu­
lated in terms of a probability function, also the error bars can be simultaneously calculated:
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These pictures show, by the way, a case with a bit too little smoothing parameter; as seen with such high 
magnification, 0 follows partially the EXAFS wiggles and the  obtained has lost some amplitude.

5.6 Normalization of χ

Given 0, the EXAFS function  is determined as

b

b










0

0

The normalization, i.e. the division by the denominator, can be taken either energy 
dependent or constant:

The former option is the correct and usual one, and the latter is necessary sometimes when experiment­
al troubles make the absorption coefficient bend up or down. The constant normalization may give by 
~20% decreased   at  the  far  end  of  the  spectrum  (at  ~1  keV  or  ~  16  Å);  the  corresponding 
overestimation in 2 is ~5·104 Å2.

5.7 Corrections to μ and χ

(E),  χ(E)  or  χ(k)  can be  corrected  by user-defined functions  f(E)  or  f(k)  in  order  to  correct,  for 
example,  the fluorescence  self-absorption.  The function  f(E)  may refer  to  the theoretical  tables  of 
absorption  coefficients  incorporated  into  VIPER.  There  is  a  specialized  self-absorption  correction 
routine that works for both XANES and EXAFS regions.

5.7.1 Self-absorption correction

Many papers have addressed the self-absorption effect. Most of them provided restricted correction. 
The early papers by [Goulon et al. 1982; Tan et al. 1989; Tröger et al. 1992] were limited only to the 
EXAFS case. The correction functions there had discontinuity at the edge and thus were not applicable 
to XANES. Moreover, those works provided corrections only for infinitely thick samples with an ex­
ception of [Tan et al. 1989] where also thin samples were considered but only as pure materials (e.g.  
single element foils).

The first self-absorption correction for the whole absorption spectra (also including XANES) was pro­
posed with two different strategies by Eisebitt et al. [1993] and Iida and Noma [1993]. Eisebitt et al. 
[1993] estimated the two unknowns μtot and μX (see the notations below) from two independent fluores­
cence measurements with different positioning of the sample relative to the primary and fluorescence 
beams. An obvious disadvantage of this method is that it is solely applicable to polarization-indepen­
dent structures (amorphous or of cubic symmetry). On the other hand, it does not require any theoreti­
cal tabulation, which is the case in the method of Iida and Noma [1993], who proposed the background 
part μback = μtot - μX, to be taken as tabulated. The advantage of their approach is its applicability to any 
sample with only one measurement. Moreover, this method is applicable to samples of general thick­
ness, not only to thick samples as required by the method of Eisebitt et al. [1993]. It is the method of 
Iida and Noma [1993] which is implemented, with some variations, in VIPER and XANES dactylo­
scope. The method was re-invented (i.e. published without citing Iida and Noma [1993]) by Pompa et 
al.  [1995],  Haskel [1999] and Carboni et  al.  [2005]. These three works,  however,  were simplified 
down to infinitely thick limit.

The correction was extended somewhat by considering a variable escape angle in order to account for 
the finite (not infinitely small) detector area: only in the synchrotron orbit plane, in EXAFS [Brewe et  
al. 1994] and also out of plane: in EXAFS [Pfalzer et al. 1999] and XANES [Carboni et al. 2005]. All 
three works operated in the thick limit. To my believe, detector pixels are always small in the sense 
that the self-absorption effect can be considered as uniform over each single pixel and therefore the 
correction can be done only for one direction towards the pixel center.

An interesting approach to correcting the self-absorption effect was proposed by Booth and Bridges 
[2005] who considered another small parameter, not the usual exp(μd), which allowed simplifying 
the formulas also beyond the thick limit but the treatment was limited to EXAFS.
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Another re-invention of the Iida and Noma method with calling it “new” was presented by Ablett et al. 
[2005]. The merit of that work was implementing the method without restriction to the thick limit and 
providing many application examples and literature references.

5.7.2 Description of self-absorption correction

The derivation of the fluorescence intensity can be found, with different notations, in almost all the pa­
pers cited above. Here it is repeated because VIPER and XANES dactyloscope add some extra factors. 
The standard expression for the fluorescence intensity originated form the layer  dz at the depth  z is 
given by the trivial sequence of propagation and absorption (with neglected scattering):

dI f  z , E= I 0
primary
flux

e−T E z / sin
primary x-ray
transmitted to
depth z

 X E 
dz

sin
absorbed in layer dz
due to edge of interest

 f
transformed
into
fluorescence



4
directed into
solid angle 

e−TE f z /sincos
fluorescence x-ray
transmitted to detector
from depth z

where μT is the total linear absorption coefficient at the primary x-ray energy 
E or the fluorescence energy Ef, μX is the contribution from the edge of inter­
est,  f  is the fluorescence quantum yield – the probability to create a fluores­
cence photon from an absorbed photon. After integration over z from 0 to d:

I f E =C
 X E

T E T E f 
sin

sin cos

1−e−T E d /sin e−T E f d / sin cos
,  (*)

where the constant C includes all the energy independent factors and is treated as unknown because the 
actual solid angle is usually unknown and also because it implicitly includes the detector efficiency.

The total absorption coefficient is decomposed as T=X b , where the background absorption co­
efficient μb is due to all other atoms and other edges of the element of interest. The constant C is found 
by equalizing all μ's at a selected energy Enorm (“normalization energy”) to the tabulated ones. Now the 
equation (*) can be solved for μX at every energy point E, which is the final goal of the self-absorption 
correction.

When the sample is thick (d→∞), the exponent factors vanish. This “thick limit” approximation allows 
finding the  μX by simple inversion of (*), without solving the non-linear equation, and is optional in 
VIPER and XANES dactyloscope.

5.7.3 Realization in VIPER

5.7.3.1 Extended correction options

Some of the options offered by VIPER and XANES dactyloscope are non-standard (extended):

1) The additional term cosτ in (*) is not quite standard; one can also find it in [Carboni et al. 
2005] and [Ablett et al. 2005].

2) Absorption by air and by Kapton foils in front of the sample can be taken into account (see the  
examples below). For this, the primary flux is multiplied by e− air E d air e−Kapton E d Kapton . The similar 
term at Ef is implicitly included into the constant C.

3) μb is usually taken to be energy independent. In VIPER it is energy dependent.

4) One can select among five different tabulations of absorption coefficients (actually, scattering 
factors f '') in VIPER.

5.7.3.2 How the tables of scattering factors are used?

In order to use the equation (*), it is prerequisite to know the sample stoichiometry,  i.e. the molar 
weighting factors xi for each atom type i in the sample. Then the linear absorption coefficient is pro­
portional to the atomic absorption cross section σa:  X ∝x X  aX  and T ∝∑i

x i ai . The atomic cross 

sections, in turn, are calculated from the tabulated scattering factors f '': a=2 r0 ch N A f ' ' /E .
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Since all the tabulations do not contain the partial contributions of each absorption edge of an element 
but only the combined result of all atomic shells, an isolation of μX and the pre-edge background is re­
quired. In VIPER and XANES dactyloscope this is done by extrapolating the pre-edge region by the 
Victoreen polynomial. The polynomial coefficients are found over only two pre-edge points, as the 
tabulations are usually sparse. As illustrated below for each tabulation used, the edge jump is the dif­
ference between the first post-edge value and the extrapolated background:

tabulation Zoomed around the Fe K-edge Full view of Fe f '' factor [1/atom]

[Henke et al. 1993]

[Brennan and Cowan 
1992]

[Chantler 1995]

XCOM [Hubbell 1977]

[McMaster et al. 1969]

VIPER searches for an absorption edge (where the derivative is positive) within –250 eV from the speci­
fied normalization energy. When an edge is found, the jump in molar cross section is displayed.
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5.7.4 Example of self-absorption correction

Load the example project Samples/fe2o3_tr_fl.vpj. It has a spectrum of Fe2O3 (hematite) measured in 
transmission and a three times loaded fluorescence spectrum. The sample is a 13-mm-diameter pressed 
pellet containing 11 mg of hematite mixed with 80 mg of polyethylene (PE) powder. The pellet was 
wrapped by adhesive Kapton foil.

As seen on the picture, the fluorescence spectrum, colored red (overlapped with the magenta one in the μ 
window), essentially differs from the transmission one, colored blue. The fluorescence spectrum is cor­
rected by the Tröger's formula (magenta) and by the equation (*), colored green. Notice that the Tröger's 
approach does not correct the μ curve but χ. For this thick sample the difference between the two correc­
tions is minor in k- and r-space. For thin samples the difference is significant.

The parameters for the self-absorption correction are seen in the screenshot above. It is essential to re­
member about the sample matrix or the supporting agent (here: PE) and to put its chemical formula as 
well. Here, the weight '83' of PE (CH2) was calculated as  
mPEMFe2O3 / mFe2O3MPE = 80mg160g/mol / 11mg14g/mol = 83.

In order to use equation (*) for thin samples, one must provide the sample thickness. This could be the 
physical thickness; then one would need to know the sample density for calculating the linear absorption 
coefficient in the exponent. A more direct way is to use the optical thickness μTd, or just its jump at the 
edge, which is usually possible directly to measure in transmission spectra (remember, we are speaking 
here about thin samples, otherwise use the 'thick' option). If the physical thickness is known, which is 
usual for foils, use the program XAFSmass to calculate μTd or ΔμXd from the sample composition, the 
thickness and density.

In the example above, the edge jump was found from the transmission spectra times  2  because the 
transmission spectra were measured at normal incidence whereas the fluorescence spectra were taken 
with the same sample at 45º. [For future versions of the manual: redo this example with simultaneously 
measured transmission and fluorescence]
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Equation (*) is also useful for 
correcting  the  high-energy 
behavior  of  μ.  This  correc­
tion is especially relevant to 
samples with low concentra­
tion  of  the  element  being 
probed or the samples  mea­
sured in  air  or  at  low ener­
gies.  In  these  cases  the  en­
ergy dependence of the back­
ground absorption μb and air 
absorption  become  impor­
tant.

The left picture differs from the right one by added 20 cm of air.

The energy dependent μb and air absorption should always be opted. The option 'μb is constant' is meant 
for illustration and for comparison with other programs.

5.8 k-weighting of χ

The  k-weighting power can be selected by the button "kw". Fly the mouse cursor over it 
without clicking or with clicking to get more powers.

5.8.1 What k-weighting to use?

Usually people use k,  k2 or  k3. The rationales people tell for using the weighting functions are (i) to 
compensate the amplitude decay at high k values, (ii) to shift the sensitivity towards high-Z neighbors 
and (iii) to reduce the correlations between the EXAFS parameters when doing multiple  k-weighting 
fits. However, if you just multiply by kw without increase of sample time or without incorporating the  
increased noise into the statistical analysis – you will not gain any additional information. To under­
stand this, notice that the statistical 2 function, from which the fitting errors are derived, does not de­
pend on kw. Indeed, noise standing in its denominator is also multiplied by the weighting function, to­
gether with the kw weighting of the data and the model, so that kw cancels. The fact that the fitting er­
rors are independent of kw tells us that we cannot extract an additional information just by using the 
weighting function. There are many papers (I don't want to cite them here) doing fitting with various 
kw-weighting which report some 'usual' errors, same for all the coordination shells, like 0.02 Å for dis­
tances and 10% for coordination numbers, regardless of the fitting quality and signal strength. I would 
be cautious with the conclusions inferred from such kw-weighting exercises.

The idea  of  reduction  of  the  correlation  between the  EXAFS parameters  when doing multiple  k-
weighting fits is very attractive. However, if you get such reduction in an EXAFS analysis program 
just by simple multiplying, not by using differently long (in time) data sets, then the correlations are 
calculated false because they do not take into account the kw-weighting of noise. See Section 9.7 for 
additional discussion. 

The kw-weighting makes sense if (a) you take into account the k-weighting of noise in all the formulas of 
the error analysis or (b if you cannot do a) if the resulting (k) kw has uniform noise. The uniform noise 
in (k) kw means the experimental noise in the absorption coefficient must decrease as kw. Hence, the 
sample time must grow as k2w. For k3 weighting this means sample time k6 and hence if you start with 
t=0.1 s at k=1 Å, you will measure with 500 hours per point at the end of an EXAFS spectrum.

Most frequently I measure with  k2 weighting and then apply ×k in  . Frequently I also do  (k) k2 

weighting, but I remember about the proper experimental k-dependence of noise when doing error analysis!

My reasoning in applying k or k2 weighting in  is mostly aesthetic: the FT must look good, i.e. all the 
FT peaks of interest should have nearly equal power.
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5.9 Subtracting EXAFS due to another closely situated absorption edge

This procedure was implemented in VIPER, hoping that it should give clearer spectra in the cases of 
close edges. For example, I have used it in the following cases: K-edge spectra for CuZn catalysts, L3-
edge spectra for BaPbBiO superconductor, L2,3-edge spectra of rare earths. By the way, you can try to 
separate close absorption edges of neighboring elements by high energy resolution fluorescence detec­
tion (HERFD) but you cannot do this for L2,3-edge spectra of the same element.

This  procedure  works  indeed  but  gives  only  little  influence  on  the  second  spectrum.  Here  it  is 
described more for curiosity than for real usage.

Consider an example of a CuZn catalyst (my previous work with group of Prof. Grünert, Bochum Uni­
versity). To subtract the Cu EXAFS from the Cu+Zn spectra I used a spectrum of Cu foil. The EXAFS 
of the foil is much stronger so that I had to reduce it in order to match the CuZn data before the Zn 
edge. Here in red is shown the Cu foil spectrum multiplied by 0.8·exp(-0.010·k2) and superimposed on 
(extrapolated) 0 curve [the multiplication was done in 'Get chi(k)' dialog using 'Corrections…' button 
and the superimposition was done using 'Subtract…' button]:

Of course, the most ideal subtraction 
would be given with the same catalyst 
but  without  Zn.  The  subtracted  Cu-
edge  spectrum  must  be  sufficiently 
long  (Eend>10200eV).  Our  other  Cu 
spectra were not that long, therefore I 
subtracted the Cu foil spectrum.

Here is shown the subtraction of differently weighted EXAFS of Cu foil from Zn EXAFS:

In energy space: … and in the Fourier-transformed space:
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The subtraction story was motivated by the question: "Is the difference between the Zn EXAFS spectra 
for samples '300C' and '400C' (both are seen on the FT picture) due to different Cu:Zn ratio and there­
fore different influence of the Cu EXAFS onto the Zn EXAFS?" The answer was: "No, the Cu EXAFS 
is negligible above the Zn edge. It is also seen that the Debye-Waller correction to the subtracted spec­
trum is not important. The coordination number correction was also tried (not shown here), with simil­
ar little importance.
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5.10 Deconvolution of life-time and experimental broadening

See [Klementev, 2001b] for the description of the Bayesian deconvolution. This procedure is imple­
mented in VIPER and XANES dactyloscope. 

You may notice that it is rather slow. Yes, I must tell that the implementation is outdated. The decon­
volution is found by solving the eigenvalue problem for an N×N matrix (N is the number of the energy 
mesh points) with one or a few non-zero bands, where the band width is given by the width of the 
broadening function. Typically, this band is of 10% of  N at the absorption edge, where the mesh is 
dense, and ~1% to the end of the spectrum. Thus the matrix is sparse. The sparse algorithms scale as 
N2 whereas the dense algorithms scale as N3. At the time of coding the Bayesian deconvolution in year 
1999, Internet was at early years and I did not have as easy access to linear algebra packages, I did not  
have much knowledge on sparse algorithms and I took the standard dense ones. Also the dense al­
gorithms did progress in the last years, see RRR algorithm in LAPACK. Thus the deconvolution can 
be made much faster than it is in VIPER but I will surely not redo it in the nearest future.

There can be two deconvolutions made: one is 'instrumental' and the other is 'lifetime'. The former is 
typically of Gaussian kernel and applied to the measured signals i0 and i1 separately (therefore the solu­
tion time is doubled). The latter is typically of Lorentzian kernel and is applied to (E).

There is a way how to check the solution: after the deconvolution has been found, the back convolu­
tion is performed by true integration and the resulting deconvolved-convolved  (I do not know if it is 
better to say "deconvoluted-convoluted") is displayed in  window as dark curve:

If you now unselect the deconvolution made, the initial  and the solution check must superimpose: 

29



The Bayesian deconvolution depends on a parameter (regularizer), denoted as . When it is small, the 
solution has rich fine structure, when it is big, the solution is smooth.

5.10.1 How to select the regularizer?

As found in [Klementev, 2001b] this is not important for EXAFS because the resulting (r) at r<8–10 Å 
is independent of the regularizer for a very large range of the latter. You can take it as 10 –5 or 10 – the 
first Fourier peaks will be the same. However, XANES and (k) certainly do depend on . One may 
try to define an optimal, in some sense, . In [Klementev, 2001b] I proposed three possible ways for 
this. Unfortunately, what I did wrong, I did not consider the spectrum length scaling. For a full-length 
spectrum the optimal  must be the same as for its shorter piece. The third method does not fulfill this. 
It seems that the second method (the conservation of S/N ratio) is reasonable. It resembles the sharpen­
ing tools in modern post-processing of digital photography: good sharpening does not increase the vis­
ible noise while enriches the picture with fine details.

The figures of merit introduced in [Klementev, 2001b] are reported in VIPER in its status bar at the 
bottom. One can utilize them for (non-automatized) search for an optimum .

5.11 Combining several spectra together

You can combine several repetitions of 
one spectrum or several channels of your 
fluorescence detector. For this, use in the 
Spectra  menu  the  command  'Combine 
spectra...':

In the appeared dialog select the spectra to combine. If these are fluorescence channels of one EXAFS 
scan, they can be summed directly:  use "sum up currents" and "point-by-point  sum".  If  these are 
different EXAFS scans, you cannot directly accumulate the measured intensities because of strong 
correlations between I0 and I1 (or It). Therefore you have to normalize to I0 individually for every 
scan and only then sum the scans. This corresponds to "sum up mu's". The energy grid in different 

30



EXAFS scans may be different. In this case, point-by-point summation is incorrect; you should do 
"adjust energy grids and then sum".

6 Fourier analysis

6.1 Forward Fourier transform (FT)
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where (k) and B(k), if used, are correcting phase and amplitude. In modern EXAFS analysis, a com­
mon practice is to incorporate the phase and amplitude (k) and B(k) into the fitting rather than into the 
Fourier transform. Note that in EXAFS Fourier transform the exponent is multiplied by 2.

Fast Fourier transform is realized in VIPER on the grid of N=212=4096 points:
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6.2 Back Fourier transform (BFT)
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The following windowing functions W'(r) are used:
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6.3 Notes on the program interface

Use the pop-up menu in the FT window to select 
a  view:  only positive  part  or  both  positive  and 
negative, as shown here:

and to switch on and off the real and the imaginary FT parts.

There is a possibility for peak search:

  

The two x and y values are also inserted into Clipboard.

6.4 Selection of kmin and kmax

Consider an example of the same spectrum (k)·k with two slightly different k limits:

 ← notice the FT range here :   15<r<25 Å.

As seen, the non-zero ends cause quite a strong FT signal in the far r-region. This region is frequently 
used for the estimation of noise, see Section 7.1. As seen, it can be easily overestimated by an order of 
magnitude. The effect of end jumps is especially strong for the kmin end, and therefore is stronger pro­
nounced for low kw-weighting. For high kw-weighting the kmin end is effectively damped.
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As a matter of exercise, from the oscillation periods in the FT one can estimate the positions in  k-
space. There are two oscillations in the dark FT curve: with ~6.3 periods over 10 Å and of 42 periods. 
These correspond to the k-features at r, i.e. to ~2 Å-1 and ~13.5 Å-1. The correspondence to the end 
positions is not exact because of interference with other frequencies.

Also the low-r FT part is sensitive to kmin and kmax:

Here the two times loaded spectrum of PdO has two EXAFS functions extracted with all the paramet­
ers equal but the k-limits different (k range is preserved the same). As seen, the FT region r<1 Å de­
pends strongly on kmin. Keep this in mind when you read papers on AXAFS (see Section 5.5.2.1 above 
for some notes on AXAFS).

Finally, the k limits is better to chose at zeros of (k), even when you use a high kw-weighting and even 
with a windowing FT function.

6.5 Which windowing function to use?

In the forward transform the (k) kw function is padded with zeroes outside the [kmin, kmax] interval. If at 
kmin or kmax the function (k) kw has a non-zero value, the thus introduced jump gives a fringe structure 
in r-space. One can easily recognize the fringes as weak equidistant peaks on FT(r) with a typical peri­
od of 0.2 Å. In order to damp the fringes, a dome-like window is recommended, e.g. Gaussian or Kais­
er-Bessel, constructed in a way that its value at the ends was not lower than 0.1. Lower ends would in­
crease the computation errors in BFT due to the division by the forward window.

In the back transform I simply use the rectangular window, as it is easy to operate by mouse.

There is an opinion I have heard several times that the BFT window must by selected with its borders  
placed at zeros of the imaginary part:

33



I find this strange: the real and imaginary parts are equal in rights. Why not zeros at the real part? 
Visualize them both. When the magnitude is zero they are both zero. This is a clear case. But what if 
the magnitude does not go to zero in between the FT peaks? I would simply select the minimum posi­
tion, regardless of whether the Im(FT) is zero there.

6.6 FT pre-correction

FT[f(k)](0) pre-correction can be done (and is done by default) before the transform, f(k) is vertically 
shifted so that 
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6.7 Extraction of amplitudes and phases

When BFT is done, the amplitude and phase can be calculated:
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The  latter  is  calculated  within a  multiple  of  .  The additive  n is 
calculated to make the phase continuous.

Now the EXAFS amplitude and phase can be saved:

The  EXAFS  amplitude  and  phase  are  related  with  the  FT 
amplitude and phase as:
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.

The values of R0, 2 and N can be chosen in the Save dialog.

The experimental EXAFS amplitudes and phases are rarely used 
because the corresponding FT peak (a) must  be well  separated, 
which  happens  not  very  often  and  (b)  must  have  no  multiple 
scattering contributions, which can be only for the 1st shell.
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7 Experimental errors in EXAFS curve
Many EXAFS people do not calculate fitting errors and in their publications they only report some 
'usual' errors, same for all the coordination shells, like 0.02 Å for distances and 10% for coordination 
numbers, regardless of the fitting quality and signal strength. Therefore I feel that the discussion on 
which method to take to estimate the errors in (k) is not much interesting. This Section is for those 
who, like me, find it important. The others, please go to the next Section 8.

The errors in χ(k) are important in two respects:

1) They are inside of 2 statistics, and the latter is a starting point for all estimations of the fitting errors.

2) They determine the useful length of EXAFS spectra. This circumstance is most frequently hidden. 
To clarify, let us consider the following. Assume we have an EXAFS spectrum of length k and we 
analyze an FT range r. Then the number of independent parameters Nind is known (see Section 9.1). 
Now I double the k range by padding zeroes or by padding noise (which happens when I measure the 
added range extremely fast). Will I double Nind? Surely not… The range k is not just the full spectrum 
regardless of its quality. It is where the signal is stronger than noise.

VIPER offers several ways of how to estimate the errors in (k). Below, each one is described and at 
the end a general comparison is given.

You can start the dialog of errors by activating the  window and pressing the k button.

The noise refers to the appeared right Y-axis. In the same scale is shown the amplitude of the  non-
weighted (k), which allows you to visually compare the noise and the signal.

7.1 Using the high-r portion of χ(r)

Use with caution!

This method was proposed by Newville et al. [1999]. 
The  starting  point  is  the  assumption  that  FT  of 
(k)kw at long distances does not have any structural 
signal  and  is  only  due  to  noise  r.  Then  a  high-r 
portion of power spectrum |(r)|2 is replaced by its 
averaged value r

2, which is equivalent to saying that 
the  k-noise  k is  white.  k and  r are  related  by 
Parseval’s equality:
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where  k is  the  k-mesh step.  A comment  must  be 
added here: if the noise k is white, kkw is also white 
because it remains uncorrelated and with zero mean 
value. Therefore the averaging of the high-r portion 
of |(r)| can be done at any k-weighting. 

|k|2 in the lhs integral is  not constant but is rapidly 
oscillating around its rms value |k|2. Then |kkw|2 in every local averaging gives |kkw|2. Finally,

)(

)12(
12

min
12

max

22
 




wwrk kkk

w


 .

Newville et al. [1999] recommend averaging in the range 15 Å<r<25 Å.

As seen from the derivation, the resulting k should not depend on the k-weighting. But it frequently 
does, and k obtained for k3-weighting can be an order of magnitude, or even more, smaller than for k1-
weighting. The reason for this is the violation of the starting assumption: the high-r FT may have a 
very long tailed signal due to the jumps at the ends kmin and kmax, see Section 6.4.
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If you use this method, it is recommended to visually check that |(r)|2 in the high-r region varies close 
to zero. Alternatively,  there must be no visible low-frequency oscillations in Re((r)) or Im((r)) – 
visualize them. Additionally, you should check that different k-weightings give close results for k.

Note that the k-noise obtained by this method is displayed in VIPER as constant but it is not constant. 
This is a zero-mean white noise with the given variance k

2. The actual distribution law for its  amp­
litude is unknown; it can be normal, Poissonian or another. Therefore it is displayed as constant k.

[A note for future development] The high-r portion of (r) can be used for alarming that the limits kmin 

and kmax are bad because they introduce FT fringes: the variation of r
2 around its middle r

2 should not 
be (much) smaller than r

2.

Notice the reported value of r (shown in the screenshot as (r)21/2 ='value' ). This can be used for er­
ror analysis in r-space fitting.

7.2 Using FT filtering

Use with caution!

This method is similar in idea that the high-r potion 
of FT[(k)kw] is due to noise. The noise is obtained 
as a difference between the non-weighted  (k) and 
BFT divided by kw. The back FT has errors near the 
ends; because of the division by  kw the  kmin end has 
an increased level of noise and should be cut-off.

Wrong  settings  for  kmin and  kmax can  affect  in  the 
obtained noise in the same way as described above. 
You should  check  that  different  k-weightings  give 
close results for k.

7.3 Using μ0 obtained by Bayesian smoothing

This  option  is  enabled  if  the  Bayesian  smoothing 
curve has been calculated. The single idea of using 
the Bayesian smoothing method is the capability of 
getting  the  uncertainties.  Try  to  do  the  Bayesian 
smoothing with and without the a priori information 
on the behavior of 0: "assume resemblance to step" 
and  "assume  known  left  end".  Watch  how  the 
uncertainties behave at the left end of (k).
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7.4 Using Bayesian deconvolution

This option is enabled if the Bayesian deconvolution 
has been calculated. This method is a lateral usage of 
the implemented deconvolution routines.  The jump 
at  ~3  Å-1 in  this  particular  spectrum  is  due  to  a 
sudden increase of the energy steps specified in the 
spectra  acquisition  program;  there  the  constant  dE 
regime  was  switched  to  the  constant  dk regime. 
Thereafter,  the  linearly  increased  uncertainty  is 
owing to the steadily increasing energy steps.  The 
same increase is seen in the previous method, where 
the 3 Å-1 jump is smoothed out because of the much 
stronger  requirements  for  smoothness  in  that 
procedure. 

7.5 Using μ0 drawn through varied knots

This  option  is  enabled  if  the  knots  have  been op­
timized and their errors have been calculated (using 
'Statistics' dialog). The uncertainties of the first and 
the last knots usually exceed the EXAFS amplitude. 

7.6 Using standard deviation of multiple 
data

This  option  is  enabled  when  there  are  several 
spectra loaded.
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7.7 Calculated from a user formula

Noise  can  be  estimated  based  on  Bayesian  con­
siderations applied to the detection statistics. Let the 
probability of a single count to occur within the time 
interval  dt be given by  P(1|)=dt. It can be shown 
[Jaynes,  1990]  that  merely  from this  assumption  it 
follows that the counts obey the Poisson distribution 
law:
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where T is the sampling time. The problem is to find 
the intensity  and its variance. Using Bayes theorem 
and  introducing  prior  probabilities  P(N)=1/N and 
P()=1/ [Jeffreys, 1939], one obtains:
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that is after measurement the variate 2T follows the 
2-distribution  with  2N degrees  of  freedom.  Hence 
=N/T, 2=N(N+1)/T2, and =N1/2/T.

Denote the counts from the detectors measuring i0 and i1 as I0 and I1. By definition, the variate
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follows the Fisher-Snedecor F-distribution with (2I1, 2I0) degrees of freedom. Its expected value and 
variance are:    =  I0/(I01),  2=I0

2(I0+I11)/[(I01)2(I02)I1],  from where for the absorption in the 
fluorescence mode (x=i1/i0):
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Further, the variate  =½ln follows the Fisher's z-distribution with (2I1, 2I0) degrees of freedom. Its 
expected value and variance are: 0, 2=¼(I0+I1)/(I0I1), from where for the absorption in the trans­
mission mode (x=ln(i0/i1)):
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The noise of the transmission EXAFS-function is
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This formula can be used in VIPER as shown in the screenshot.

Note again that all the above formulas are solely based on the assumption of the probability of a single  
count P(1|)=dt. In practice this condition is realized as: P(c|)=dt, that is the amplification path works 
in such a way that one photon gives birth to c measured counts. This circumstance changes the degrees of 
freedom in the above distributions from 2N to 2N/c; the measured counts need substitution: I0,1 to I0,1/c.

[For future versions of the manual: give an example of how to estimate c]

7.8 Comparison of different estimations of experimental errors

There are two major contributions to the experimental errors in χ(k): those due to (i) measurements and 
(ii) uncertainty in  0. The former one does not only include noise at every individual point but also 
must depend on the density of the measured points. Indeed, if the density is growing, there are more 
points falling into a single dk interval, thus the χ(k) points must get less noise. The methods which cal­
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culate the errors by taking the data from the equidistant k-space are obviously insensitive to the density 
of points in E-space. Such methods are the two Fourier methods 7.1 and 7.2. The multiple data aver­
aging 7.6 is done point-by-point and also only sensitive to amplitude noise.

The standard deviation of the knot positions 7.5, in contrast, only represents errors in 0 but not the er­
rors due to measurement statistics.

The Bayesian methods 7.3 and 7.4 are sensitive to the data density. They also can directly incorporate 
the individual noise at every point.

[A note for future development] The Bayesian methods (smoothing and deconvolution) are now taking 
measurement noise as a global (unknown but most probable) parameter. These methods should be re-
coded to give options for selecting noise as (a) known, (b) proportional to a selected function, at least 
given by Poissonian statistics, with the most probable coefficient of proportionality and (c) the most 
probable global noise, as it is now.

The Bayesian smoothing 7.3 also gives errors in 0. 

It appears that all the listed methods can either estimate measurement noise or uncertainty in 0 (the 
Bayesian smoothing 7.3 can, in principle, be sensitive to both but not in the present version of VIPER). 
But are these two errors equally important? As seen in the above screenshots, 0 errors are about one 
order of magnitude bigger. When these errors are used to determine the fitting 2 statistics, the latter 
takes usual good values. In contrary, a pure statistical noise gives much too high 2 values and feeds 
the popular in the EXAFS community discussions about magic 'systematic' errors.

Finally, I would recommend using the Bayesian smoothing once for every new set of data. After the 
errors have been estimated and the  k-range for fitting has been settled (this  is where the signal is 
stronger than noise), I switch to standard smoothing spline with the same smoothing parameter.

8 Fitting EXAFS
Scattering amplitudes and phases must be calculated by other programs (FEFF format is recognized) or 
can be extracted by VIPER from a reference spectrum. If the photoelectron momentum l is even (ab­
sorption edges K, L1, M1, M4, M5 etc.),  must be added to the loaded phase. Important: You must not 
add  for the phases generated by FEFF because it is already there.

If the amplitudes and phases are loaded as feffNNNN.dat files, these are calculated as:

f(k) = column('mag[feff]')·exp(2R/ column('lambda'))·column('red_factor')
(k) = column('real[2phc]') + column('phase[feff]')

The global loss factor S0
2 is assumed constant and can be set in 'Options…' of every fitting procedure. 

See Section 8.7 for discussion on S0
2.

8.1 Fitting by ordinary EXAFS formula

EXAFS-function is treated as a sum over coordination spheres (shells):
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The varied parameters are:  Nj − coordination number,  Rj 

− radius of the  j-th sphere (Å),  2
j − distance variance 

(Å2),  (E0)j −  energy  shift  of  E0 (eV).  Scattering 
amplitude  fj(k) and phase  j(k) must be loaded from an 
outer file.

Parameters of a coordination sphere can be fixed or related by equalities or inequalities with the same 
parameters (n with n, r with r etc.) of the other spheres. For example:
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r2>4.3r1 distances;
s2=s1 distance variances;
n3=12-n1-n2 coordination numbers;
n1=6 coordination number;
s1in0.001..0.02 distance variance, means 0.001<s1<0.02
e2in(e1-1)..(e1+1) energy shifts, means |e2-e1|<1

Each expression can use (almost) any function of variables: r1, n1, s1, e1, r2... Put one expression per line.

8.1.1 How about multiple scattering (MS) fitting? Can VIPER do it?

Yes, it can. FEFF calculates the effective amplitudes in the way that χ(k) is expressed in terms of the 
same standard EXAFS formula. If you use FEFF amplitudes, it does not matter whether a scattering 
path is of single or multiple scattering type, you just specify the corresponding feffNNNN.dat file.

8.1.2 Why the energy shift is not global but is different for different shells?

Indeed, uncertainty in the E0 positioning (see Section 5.3) is global and is common for all the coordina­
tion shells. However, the calculated scattering amplitudes and phases may have shifts in Fermi energy. 
Moreover, the shifts may be different for different types of atoms. However, this difference should not 
be big: it is typically about 1 eV with self-consistent calculations and about 3 eV with overlapped atom 
potentials [FEFF8.10 manual]. Make sure that the E0 shifts obtained are not much different from each 
other. The energy shifts for the same atoms in different coordination shells should be constrained as 
equal (like 'e2=e1').

8.1.3 How to load a model and save the fitting results?

Load the project 'Samples/PdCOld.vpj'. Select in the Spectra menu the command 'Hide all other spec­
tra'. Set focus to the BFT window (click on it) and press 'fit' button. Press 'Base...' button in the fitting 
window and open the 'Samples/Pd.vip' data base. Now click to the header of the first entry.  Under 
'Setup...' button, set the global  S0

2 parameter equal to 0.923, as given by FEFF for Pd. Play with the 
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BFT windowing function and with the fitting parameters. Start the automatic optimization. Stop/Sart it  
several times; in this way it goes faster. When you see that the R-factor decreases very slowly, stop it. 
Invoke 'Statistics' dialog. This dialog and the underlying procedures will be described in Section 9.8.

Now set  m=1.5 for the noise  km-weighting (why?  − will be ex­
plained in Section  9.7). Right-click on the panel with the cor­
relation coefficients and copy the resulting fitting errors.

Close the Statistics dialog and open the data base again. If you want to create a new data base, close the  
opened one and in the 'Open Base' dialog give a new name. Prepare a place where you want to insert a new 
model description (insert empty lines and put the cursor there) and by right click do 'Insert New Info':

Then paste the copied fitting errors:

Try then to load the inserted model:
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Save the file via right-click menu. The data base is a text file. You can edit it by any common editor. The 
supplied examples have local  path references  to the amplitude&phase files in the sub-directories of 
Sample directory. A new data base entry has full path references. If you copy the data base together with 
the amplitude&phase files to another computer, you should manually change the paths accordingly.

8.1.4 How to create a new model?

Specify amplitude & phase for the first shell. As soon as this is done, the model becomes visible. Now 
one can add the next shell. When a model has more than one shell, one has the possibility to leave only 
one (current) shell visible in order to see how strongly it contributes.

8.2 Fitting by a user-expanded EXAFS formula (cumulant expansion)

Toggle to the advanced mode by pressing the button 'To advanced mode/To simple mode'.

The cumulants [Rehr & Albers, 2000, Section IV.E] can be added by user-defined formulas, up to a 
desired order. The added variables can be any except r, n, s, e (which are already in use) and k (inde­
pendent variable).

8.3 Fitting using radial distribution function specified by user-defined formula

EXAFS-function is treated as a sum over coordination spheres (shells):
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gj(r) may be of arbitrary shape and is given by a user-defined formula. The character parameters of the 
formula from "a" to "z" are varied (r, n, and e are reserved). Besides these parameters, the varied para­
meters are:  N −  coordination number,  E −  energy shift of  E0 (eV). Scattering amplitude  fj(k) and 
phase j(k) must be loaded from an outer file.

Close  the  previous  example:  press  F8  and  close  the  fitting  dialog.  Load  the  project  file 
'Samples/fitting.vpj'  and  press  the  second  'fit'  button.  Open  the  data  base  ('Base...'  button) 
'Samples/OBi030.vip' and load the second entry:
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8.4 Fitting using oscillatory potential U(r) of the absorber-scatterer pair

EXAFS-function is treated as:
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where the atomic radial distribution function g(r) is calculated as:
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where N is coordination number.

Potential U(r) depending on the distance r between absorber and scatterer atoms in which the particle of 
the reduced mass of these atoms oscillates may be of arbitrary shape and is given by a user-defined for­
mula. The character parameters of the formula from "a" to "z" are varied, "r" is independent variable, "n" 
and "e" are reserved.

Examples:

U(r)=a/2*(r-x)^2*lstep(r,(z+x*(a/b)^0.5)/(1+(a/b)^0.5))+

b/2*(r-z)^2*rstep(r,(z+x*(a/b)^0.5)/(1+(a/b)^0.5)) − double-well parabolic potential,
U(r)=a*(1-exp(-b*(r-z))^2 − Morse potential.

All energetic parameters are measured in Kelvins, distances in angstroms. It is possible to set several  
independent wells. Besides these parameters, the varied parameters are: N − coordination number, E 
− energy shift of E0 (eV).

Close the previous dialog and open the 3rd 'fit' dialog. In the opened already data base load the third entry:
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8.5 Multi-edge fitting

If it is possible to measure EXAFS for the same sample at several absorption edges then the distances 
and Debye-Waller factors as seen from the several origins must be equal. Therefore one can constrain 
these parameters to be equal in a multi-edge fitting procedure and thus obtain reduced fitting errors.

The example project Sample/CeRu2.vpj  has two spectra,  at  L3-Ce and K-Ru, for the same sample 
CeRu2. In the multiple-edge fitting, one can equalize the Ce-Ru and Ru-Ce distances:

Multi-edge fitting is possible in all the above fitting procedures except the last one.
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8.6 Fitting in k- and r-space

All the fitting procedures in VIPER are possible to perform in k- or r-space. What is better? Fitting in 
"k-space" here means in "Fourier filtered  k-space" because to include all the scattering atoms up to 
very distant ones that still contribute stronger than noise is impossible. This would require too many 
fitting parameters while this number is limited, see Section 9.1.

If you superimpose BFT over its original  (use the corresponding option in the BFT dialog), you can 
see that the ends of the BFT (typically 0.1−0.4-Å-1-long) are somewhat distorted. Therefore if you fit 
in the filtered k-space, you must cut off the ends and you lose some available data.

There are two major disadvantages in doing fitting in r-space. (i) At every iteration you must do FT of 
your model . This slows down the fitting a lot. (ii) Whereas one can estimate uncertainties of 0 in k-
space, to do so in r-space is difficult. However, one can easily estimate measurement noise in r-space 
as constant and taken from a far-r region (see Section 7.1). As seen in Section 7.8, it is uncertainties of 
0, not the measurement noise, that mostly contribute to uncertainties of . Therefore, to determine the 
2 statistics, and hence to find the true fitting errors, in r-space is more difficult.

8.7 Is it possible to fit S0
2?

Some people determine the many-body factor S0
2 experimentally from a reference spectrum. For this 

they fix the coordination numbers to the known values and let the factor S0
2 vary. Then they use the 

obtained S0
2 for the other spectra at the same absorption edge. Is this way good?

There are several factors which contribute to the EXAFS amplitude:

1) coordination numbers,

2) S0
2: intrinsic losses (core-hole lifetime broadening).

3) extrinsic losses (photoelectron free path). In FEFF, these are calculated from the self-energy based 
on a simplistic electron gas model and thus the free path is not well accurate [Rehr & Albers, 2000].

4) experimental broadening due to finite energy resolution.

5) other experimental factors, like non-linearity of fluorescence detector, the presence of pin-holes or 
high-order harmonics. All these can significantly lower the measured EXAFS amplitude.

6) some amplitude losses when 0 was constructed by a smoothing spline.

Even if the contributions '5' and '6' are carefully eliminated, the "experimental" (fitted) S0
2 contains at 

least the effect of the contribution '4'. The fitted S0
2 is therefore not purely due to intrinsic losses and is 

not of much physical interest.

There is another way of how to tune the global amplitude: to put the reduction factors onto the calculated 
scattering amplitude.

The latter way is preferable because it accounts for the experimental and core-hole lifetime broadening 
more correctly due to the following. The EXAFS wiggles are approximately of constant width in  k-
space and thus of growing width in E-space as one goes away from the absorption edge. Therefore any 
broadening of a convolution type is less important far from the absorption edge: the broadening func­
tion there is more -function-like in comparison with the wide EXAFS wiggles, hence the convolution 
integral leaves the absorption coefficient there almost unchanged. As seen, the amplitude reduction 
due to the broadening effects is not constant along the spectrum. This is the way how the broadening 
appears in FEFF, whereas the "experimental" (fitted) S0

2 assumes all the amplitude factors to be con­
stant.

Finally, if you want "experimental" S0
2, do the following. Set S0

2 = 1 in the fitting options and run the 
fitting for your reference spectrum. Divide the obtained coordination numbers by their true values. Use 
then the thus obtained S0

2 for the spectra of interest.

If you include the amplitude corrections into the amplitude calculated by FEFF (as I do), do the fol­
lowing. Use the cards S02 or EDGE or HOLE and set the value of S0

2 < 0.1. This will make FEFF cal­
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culate it. Use the obtained value in the VIPER fitting options. Use EXCHANGE card of FEFF with a 
positive imaginary part. Check that the coordination numbers obtained in VIPER with the calculated 
amplitudes are correct within the fitting errors. If not, put another value into the EXCHANGE card and 
run FEFF and fitting again. Usually one needs just a few such steps to achieve good coordination num­
bers with discrepancies much smaller than the fitting errors.

8.8 Details of the fitting algorithm

The minimized function of the fitting parameters is
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where yi denotes kw-weighted (ki) if the fitting is done in k-space or (ri) if the fitting is done in r-space.

The minimization algorithm is the simplex downhill method which is shortly described here. Starting 
from the initial parameter set, each of the P parameters, one by one, gets an increment. There are now 
P+1 points, counting also the initial one, which form the simplest geometrical figure in the P-dimen­
sional space (whence 'simplex'). In every apex of the simplex the figure of merit R is calculated. The 
highest apex (where R is largest) is reflected relative to the center of the opposite simplex face. At the 
new point the R value is calculated. The number of reflections is shown in VIPER fitting dialogs as the 
number of iterations (small  iterations).  The reflections continue until  the highest apex remains the 
highest also after the reflection. Then the lowest apex is found and a new smaller simplex is construc­
ted around it. The number of simplex constructions is shown as the number of iterations in parentheses 
(big iterations).

Termination criteria are the following: (1) the difference in  R-factor at the highest and at the lowest 
apex < 106 or (2) the number of big iterations > 10·P. These criteria are arguable, of course, but ac­
cording to my experience are reasonable.  Another value based on my experience is the shrinkage 
factor at the big iteration. I have found the fastest convergence with the factor equal to e (the base of 
natural logarithm).

Earlier versions of VIPER had the possibility of initial simplex deformations such that all the simplex 
edges had (almost) equal differentials of the function minimized. Sometimes this gave faster conver­
gence. However, if the model had a bad parameter, i.e. a parameter to which the model was weakly 
sensitive, such deformations led to extremely long convergence. At present, I suggest setting the initial 
increments by hand (do this in the Options dialog). In this way you may visually check how responsive 
is your model to your parameters when you change them by spin buttons. For the standard fitting pro­
cedure the default increments are reasonably good.

9 Statistical evaluations in fitting
The ultimate goal of these methods is to find the confidence limits for the found fitting parameters. 

9.1 χ2 statistics

Assume for the experimental curve d defined on the mesh x1, ..., xNpts there exists a model m that de­
pends on P-dimensional parameter vector p. In XAFS fitting problems as d may serve both (k) and 
(r). The problem is to find the parameter vector p0 that gives the best coincidence of the experimental 
and the model curves. Introduce the figure of merit: the 2-statistics (do not confuse it with the symbol 
of EXAFS function) as
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where i is the error of di. The variate 2 obeys the 2-distribution law with NptsP degrees of freedom.

Often a preliminary processing (before fitting) is needed: smoothing, filtration etc. During the pre-pro­
cessing some part of the experimental information is lost, and on the variates  i=(dimi)/i additional 
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dependencies are imposed (before, they were bound solely by the model m). It is necessary to determ­
ine the number of  independent experimental points  Nind. For the commonly used in EXAFS spectro­
scopy Fourier filtering technique, the number of independent points is given by [Stern, 1993]:

Nind = 2kr/+ 2, (9.2)

where  k  = kmaxkmin and  r  = rmaxrmin are the ranges in  k- and  r-spaces used for the analysis, and 
rmin>0. If rmin=0 then

Nind = 2kr/+ 1. (9.3)

Instead of keeping in the sum (9.1) only Nind items which are equidistantly spaced on the grid x1, ..., 
xNpts , it is more convenient to introduce the scaling factor Nind/Npts:
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Now the variate 2 follows the 2-distribution with =NindP degrees of freedom. It can be easily verified 
that with the use of all the available data (rmin=0 and rmax=/2dk) the definition (9.4) turns into (9.1).

Important:  must be positive, i.e. P < Nind. Otherwise the statistical properties of the variate 2 are un­
defined. In practice this leads to very unstable fitting: a small variation even in a single parameter may lead 
to an essentially different fit.

9.2 Posterior distribution

Let us now derive the posterior distribution for an arbitrary fitting parameter pj:

)|()|( dppd PdpP jj   (9.5)

where P(p|d) is the joint probability density function for all model parameters p, and the integration is 
done over all pij. According to Bayes theorem,
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with Pprior(p) being the joint prior probability for all parameters, P(d) a normalization constant. Assum­
ing that  Nind values in  d are independent and normally distributed with zero expected values and the 
standard deviations i, the probability P(d|p), so-called likelihood function, is given by

 2exp)|( 2pdP (9.7)

where 2 was defined above by (9.4). Its expansion in p near the minimum 0
2 (where p2 = 0) which 

is reached at p = p0 yields:
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where pk=pkp0k, and the Hessian H components (the second derivatives Hkl ≡ ∂22/∂pk∂pl) are calcu­
lated in the fitting program at the minimum of 2. The sufficient conditions for the minimum are:

Hkk>0 and HkkHllHkl
2>0 for any k, l. (9.9)

Hence, the surfaces of constant level of P(d|p) are ellipsoids.

9.3 Simplest cases: partial correlations

If one ignores the prior probability then the posterior probability density function  P(p|d) coincides 
with the likelihood P(d|p). Let us consider here two widely used approaches.

(a) Parameters are perfectly uncorrelated

In this case the Hessian is diagonal and
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The standard deviation of pj is just
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(b) Parameter pj essentially correlates solely with pi

In this case
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In practice, to find the strongly correlated pairs of parameters one finds the pair-correlation coefficients:
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taking the values from 1 to 1. Two parameters are uncorrelated if their correlation coefficient is close 
to zero. Through the correlation coefficient, the mean-square deviations found for the cases (a) and (b) 
are simply related:
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This relation can be also represented graphically. Consider the joint probability function
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shown in the figure below as a color map. The ellipse of standard deviation (shown by red) is de­
scribed by 
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For this ellipse, the point of intersection with the line pi = 0 and the point 
of maximum distance from the line pj = 0 give the standard mean-square 
deviations (a)pj and (b)pj. 

9.4 General case: total correlations and a priori information

Now, we should define the prior probability. Let the parameter pk be known to be within the range of 
the size Sk. Then the prior probability can be expressed as:
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The rationale of this prior is that it maximizes the information theory entropy Pprior  lnPprior  dp under 
the constraints  Pprior  dp = 1 and pkplprior =  klSk

2 (prior means averaging over the prior probability 
Pprior). In other words, this prior introduces minimum information in addition to the approximate know­
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ledge of the sizes Sk. The regularization parameter  specifies the relative weight of the prior probabil­
ity; at  = 0 there is no prior information, at    the fitting procedure gives nothing and the posteri­
or distribution coincides with the prior one. In the expression (9.15)  appears as a known value. In 
reality,  is yet to be determined. This problem will be considered below.

Finally, for the joint posterior probability density function we have:
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where Akl = Hkl/2 + ·klSk
2.

Now, if  was known, the standard errors of the fitting parameters could be readily obtained:
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Further, we find the eigenvalues i and corresponding eigenvectors ei of the matrix A and change the variables:
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where ei
k is the k-th component of the eigenvector ei.

Using the properties of eigenvectors:
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one gets the matrix A diagonalized and:
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which is the fitting error taking into account all pair correlations.

9.5 Most probable a priori weight

The only problem that remains to be solved is to determine the parameter . On one hand,  specifies 
the relative weight of the prior information (put  = 0 if you do not want it), on the other hand, it makes 
the matrix A be positively defined. In general, the matrix H is not positive, especially when P, the num­
ber of fitting parameters, is big and several ill-conditioned directions appear in the parameter space or 
when the model and experimental curves differ significantly. Thus, the regularization with a sufficiently 
big  guarantees that all 's in Eq. (9.18) are positive and essentially not zeros.

In the modern Bayesian methods,  itself is determined by Bayesian arguments that maximize the pos­
terior probability of  given the data [Turchin & Nozik, 1969]:

),|()()|,()|(  dppdppd   PPdPdP (9.19)

Using a prior P() = 1/ (so-called Jeffreys prior [Jeffreys, 1939]), one obtains the posterior distribution:
12/2/1

1 )()|(  P
PP  ⋯d . (9.20)

Having found the maximum of this distribution, one obtains for  its most probable value mp and the 
corresponding matrix A. Then by Eq. (9.18) one finds the Bayesian errors of fitting parameters. I have 
found (the proof is in Appendix 9.10) that at  = mp:
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2
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2 
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
post , (9.21)
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where  post means averaging over the posterior probability  P(p|d,  ). The difference  2  0
2post 

taken at  = mp appears to be independent of the number of fitting parameters P and i (and any pre-
factor in the definition of 2) although 2 itself does depend on P and i. Eq. (9.21) can be considered 
as an equivalent equation for the maximization of P(|d).

9.6 What if the experimental errors εi were determined incorrectly?

Notice that the above formulas need 2 which, in turn, needs the experimental errors i. The latter were 
determined in Section 7 by various ways and with different results. How important is to know the er­
rors i correctly?

If in the definition of 2 (9.4) the errors i are taken by a factor  smaller than the correct ones then 2 

is bigger by 2, the Hessian H with all its components and the eigenvalues is also bigger by 2. By ex­
pressions (9.10), (9.11) and (9.18), the fitting errors are then by  smaller than the correct ones.

Finally, underestimated errors i give proportionally underestimated fitting parameters.

9.7 What if the experimental errors εi are unknown?

Even in this case it is possible to estimate the fitting errors. We assume that 2 follows the 2-distribu­
tion with = N-P degrees of freedom. Its most probable value is . Thus we can determine the errors i 

from the equality for the best fit 2 value: 0
2=. For the experimental errors i in k-space this approach 

can be further extended.  We can set  the spectrum acquisition program such that  i  km,  and the 
proportionality constant is again found from 0

2 =. If the experimental EXAFS curve was measured 
with sampling time  k2m then the measurement noise is  k-m and the noise i of ·kw is  kw-m. For 
the example in Section  8.1.3 the spectrum was measured with sampling time   k and then the  k2 

weighting was applied to (k). The resulting noise should have the behavior i  k1.5. If you measure 
with constant sampling time, your experimental noise is simply weighted by kw weighting of (k).

Note that if you forget to weight the noise by kw, the resulting fitting errors are underestimated (play 
with km weighting in the 'Statistical evaluations' dialog and watch how the fitting errors are changing).

9.8 'Statistical evaluations' dialog

← (shown here with 'Mapping…' activated and calculated)

k=kmaxkmin — the range in k-space, calculated automatically.

R=rmaxrmin — the range in r-space, calculated automatically for 
fits in  r- or Fourier-filtered  k-space,  i.e.  when the FT window 
exists. Otherwise, must be set manually.

Nind — the number of independent points (9.2), here denoted by N.

P — the number of fitting parameters.

=NindP — degree of freedom.

data errors — if the experimental errors are known from Section 
7, load them as a curve or set as a value.

km — weighting of noise: see Section 9.7.

2-test  — if  the  data  errors  are  set  unknown,  the  2 value  is 
forced to be   (displayed in black). If  the errors are given ex­
plicitly,  the  2-test is performed: the  2 value smaller than the 
critical value (

2)c for the given significance level c (see Section 
9.9.1) is displayed in green, otherwise in red.

fitting errors pk — the three options correspond to the errors (a)pk (9.10), (b)pk (9.11) and (c)pk (9.18). 
The errors themselves are displayed at the left of the colored correlation table. The last option of the 

50



three is the most correct one. The other two are primarily of educational merit, for showing how smal­
ler the fitting errors can be in neglecting the correlations.

A priori space sizes, regularizer — If you want to use the a priori part, set reasonably big limits Sk in 
the drop-down list and select 'most probable' for the regularizer .

If you do not want the  a priori part (normally I do not use it), set the regularizer  =0 and unselect 
'most probable'.

The colored matrix at the top right part shows the correlation coefficients (red = close to 1, blue = 
close to 1, black = close to 0). The column at its left represents the main result of the statistical evalu­
ations – the fitting errors. It may happen that some correlation coefficients are displayed white and/or 
some fitting errors are set to zero. This happens when the conditions (9.9) are not fulfilled because the 
minimum was not reached or when the Hessian cannot be inverted because of strong correlations.

The 2D mapping is a graphical tool visualizing the likelihood function exp(-2) dependent on two se­
lected fitting parameters. This visualization does not have much practical value and only serves to 
demonstrate the presence or absence of correlations.

9.9 Statistical tests

9.9.1 χ2-test

A good EXAFS model should give the variate 2 defined by (9.4) that follows the 2 distribution law, 
that is this variate should not fall within the tail of this distribution. In other words, the 2 value should 
be smaller than the critical value (

2)c for the given significance level  c. Typically, the significance 
level for this test is selected to be 0.95.

Of course, this test strongly depends on the estimation for the experimental errors i.

9.9.2 F-test

Let there be a possibility to choose between two EXAFS models depending on different numbers of 
parameters P1 and P2. Which one of them is more statistically important? For instance one wishes to 
decide whether a single coordination sphere is split into two.

Let 
2 and 

2 follow the 2-distribution law with 1 = NindP1 and 2 = NindP2 degrees of freedom, 
correspondingly. From the linear regression problem (near the minimum of 2, the likelihood function 
is expressed by (9.8) and is identical in form to that of the linear regression problem) it is known that 
the value

2
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obeys  the  Fisher-Snedecor F-distribution  law  with  (12,  2)  degrees  of  freedom  if  exactly  
r = 1  2 parameters in the second model are linearly dependent. In order the linear restrictions on the 
second model be absent, the value  f should not follow the F-distribution, that is it should be greater 
than the critical value [F(12, 2)]c for the specified significance level c: f > [F(12, 2)]c, or
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Notice, that the expression (9.22) means the absence of exactly r linear restrictions on the second mod­
el parameters. Even if (9.22) is realized, less number of linear dependencies are possible. If, for in­
stance, the splitting of a single coordination sphere into two does not contradict to the F-test (9.22),  
some of the parameters of these two spheres may be dependent, but not all. This justifies the introduc­
tion of a new sphere into the model EXAFS function.

Thus, having specified the significance level c, one can answer the question "what decrease of 2 must 
be achieved to increase the number of parameters from P1 to P2?" or, inside out, "what is the probabil­
ity that the model 2 is better than the model 1 at the specified (P1, 

2) and (P2, 
2)?"

Notice, that since in the definition for f the ratio 
2/

2 appears, the actual values of i become not im­
portant for the F-test (only if they all are taken equal to a single value).

Consider an example with the following numbers: (1 = 7, 
2 = 16.8) and (2 = 4, 

2 = 5.3). For these 
values, f = 2.89 = (F3, 4)0.84, from where we can assert that with the probability of 84% the model 2 is 
better than the model 1.

9.10 Appendix

Proof of Eq. (9.21) [I have never seen this equation presented anywhere whereas it looks nice and is 
easy to use in practice. In order to arrange my old notes, I am putting it here]

1) Rewrite the posterior probability (9.16) as:
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In a more general case of the prior P() = , in the rhs of (9.21) would stay 2.

The posterior average of 2  0
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i

i
l

i
kP

ikl

kl

post

ee


 

2

H2
0

2
.

This follows from the decomposition

   
  

 





p

p

dpp

dpppp
P

kl lkkl

P

kl lkkl

P

kl lkkl

post Aexp

AexpH

2
1

2
1

2
1

2
0

2  ,

diagonalization of the exponent power and noticing that the non-diagonal terms in the pre-exponent 
factor are odd and thus cancel in integration.
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10 Exporting data and saving project file
The curves visible in any window (currents, mu, chi, FT and BFT) can be exported to column files. For 
this, activate the window of interest and use the top 'Save' button or the main menu 'File'.

The actual menu configuration depends on the current program status.

One can export several curves at one go. Use the 
menu command 'Save everything at once':

This way is especially useful with many loaded 
spectra. When I use this dialog, I normally keep 
the original names of spectra and add different 
extensions. [Note: although the generic file name 
is not used in this case, the wildcards '*' and '?' 
must not be in it as these prevent the dialog from 
closing;  give  any  dummy  name  without 
wildcards.]

Another very useful function of this dialog is to 
save project files. A project file has description 
of data files, energy calibration, parameters of  
extraction  and Fourier analysis  etc.  It  does not 
save deglitching or fitting parameters. The latter should be saved directly from a fitting dialog. The 
project files Samples/*.vpj have been saved in this dialog. 

Important:  Project files are text file. You can edit them by any common editor. A newly created 
project file has full path references to the data files. If you move the data files, you should change the 
paths accordingly. I normally keep project files in the same directory with data. Then I keep only the 
file names in a project file and manually delete the directory paths.
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