

VIPER (Visual Processing in EXAFS Researches)

• 'Formats...' dialog box

Formats for XAFS data files 🛛 🗙	Edit - pd5_00005.fio (line #1)	- 🗆 🗙
format name: HASYLAB_X1_transm HASYLAB_e4_afterJun2003 HASYLAB_e4_afterJun2003 HASYLAB_e4_transm Spring8 XAFS Model Compound Library header Consists of strings begining with Consists of strings begining with	! ! Comments %c EXAFS-Scan started at 22-Jul-2005 14:49:12 Name: pd5_00005 from 24150 to 25397.88 Counter readings are offset corrected and normalized to 1s, the offsets ar C1 227 C2 106 C3 180 C4 0 Gain of Keithleys: IC1=10exp8 IC2=10exp8 IC3=10exp8 Filter rise time : IC1=3msec IC2=3msec IC3=3msec Using the Si_311 crystals. Translation of crystal2 is 73.53236 mm. detuning=50% exit_slit=0.60x8.00mm^2 The present ring current was I_doris=110.3476 mA. sample position (mot25)=98.36 ! The EXAFS Scan Regions	e:
unique words in header to recognize this format HHENERGY AND data in columns Col1 through Col52 absolute energy Col4 C keV i0= Col8 • i1= Col9	! !Energy Delta Sample_Time_Edge Power !24150 2 0.2 0 0 !24320 0.2 0.2 0 0 !24370 0.6 0.2 0 0 !24440 0.927 0.2 24350 2 !25400 0 0 0 0 ! ! Data	
C load i1 columnIs as separate spectra: from column through reference curve (for energy calibration): [In(Col9/Col10) OK Cancel	%d Col 1 PD5_00005 FLOAT Col 2 PD5_00005 FLOAT Col 3 PD5_00005_HHTHETA FLOAT Col 4 PD5_00005_HHENERGY FLOAT Col 5 PD5_00005_REF FLOAT Col 6 PD5_00005_C1 FLOAT Col 7 PD5_00005_C2 FLOAT Col 8 PD5_00005_C3 FLOAT Col 9 PD5_00005_C4 FLOAT Col 9 PD5_00005_C4 FLOAT	
	Col 10 PD5_00005_DELTA_FL0AT Col 11 PD5_00005_SAMPLE_TIME_FL0AT 24150 -1.365968 9.017096 24155.24 0.6171176 1 24151.99 -1.365968 9.017096 24155.24 0.6165973 1 24153.99 -1.365626 9.015768 24158.78 0.6166254 24156.01 -1.366015 9.014996 24160.82 0.6165859 24158 -1.365955 9.014235 24162.84 0.6161646 1 24160 -1.366279 9.013522 24164.75 0.6156791 1 24161.99 -1.3666376 9.012848 24166.53 0.6156254 24163.99 -1.366609 9.011373 24168.43 0.6156132	81193 17986 17925 18104 80763 79243 17922 18121 18080 👻
	4	

after opening an experimental file (containing currents of ionization chamber

after pressing 'get $\boldsymbol{\chi}'$ button

a filtered $\chi(k)$ is loaded and the command 'fitting using U(r)' is performed

'Statistics' dialog box (after pressing 'Statistics...' button) with mapping and statistical tests

Statistical evaluations (to redraw, press 'Statistics 💶 🗙	
$ \begin{array}{c} \Delta R = \underbrace{1.40}{} \rightarrow N = 2\Delta k \Delta R / \pi + 2 = 13.58 \\ P = 6 & \nu = N \cdot P = 8 \\ \hline individual errors of data points \\ \hline are proportional to k^m, m = \underbrace{1.5}_{\bigcirc} \\ \hline \ref{rorportionality coefficient is unknown} \\ \hline \ref{rorm file} \\ \hline rorm f$	
χ^2 -test: 8.00000000 χ^2_c and F-test	
δpk C independent C supreme projection integrated a priori space sizes: Image: reg-r= 0.00000 Image: most probable (\chi ²) post= 6.0000	F-test
min max pixels	χ ² critical value
X: b1 2.2e+5 2.8e+5 115	$v = 8$ \leftarrow $c = 0.632$ \leftarrow $X_8^{0.032} = 8.7026$
Y: $x1 = 2.07$ 2.11 115 ellipticity param = 0.5138 $\chi^2 \bigcirc \text{ exact } \bigcirc \text{ decomposed}$ correlation coefficient = 7.404e-1 confidence level $0.393 $	F-test $v_1 = 8$ $v_2 = 7$ $x_1^2 = 8.00000000$ $\chi_2^2 = 7.05619989$ $c = 0.632$ $v_1^2 = 0.936$ Close Help

you can open as many files as you want (this is a series of CuZn-based catalysts under reduction treatment)

you can easily combine several spectra. Here are 6 fluorescence spectra ...

